More than just nodule detection…
2023-08-31

Radiologists at the Imapôle Lyon-Villeurbanne group benefit from the support of contextflow AI to detect lung anomalies

Medical imaging, a central pillar of modern medicine, has become indispensable –  a cornerstone of patient diagnosis – and it will be even more so moving forward. Looking towards the future, Imapôle Lyon-Villeurbanne, the medical imaging department of the largest private healthcare establishment in the Lyon region, Médipôle Lyon-Villeurbanne, is fully committed to this belief and has thus integrated contextflow ADVANCE Chest CT into its clinical routine. To better understand the reasons for adopting contextflow, the selection criteria, the deployment experience and the benefits observed, we spoke to Samir Lounis, CEO & General Manager at ImaOne. He manages and directs the Imapôle group’s activities.

Hello Mr. Lounis, could you tell us about Imapôle Lyon-Villeurbanne?

The Imapôle group consists of 10 radiologists responsible for reporting the medical images from two sites: Médipôle Lyon Villeurbanne, Europe’s largest private hospital with over 850 beds, and the Pôle Médical d’OL Vallée in Décines. These two sites carry out more than 800 examinations a day and around 170,000 examinations a year. 

Our team manages this workload, and we are strongly committed to the use of artificial intelligence solutions. We firmly believe in AI’s potential to support our radiologists and transform them into “augmented radiologists” in order to provide more accurate diagnoses and be able to manage a much higher volume of examinations.

What were the motivations and determining factors that led your radiology department to consider adopting contextflow in your clinical practice at Imapôle Lyon-Villeurbanne?

At Imapôle, a significant proportion of our work (∼1/3) is in oncology. This means that we have to interpret a large number of images to monitor or detect pathologies in our patients. In this context, we had been looking for a solution that could help us detect nodules and monitor their evolution in terms of size, particularly in terms of growth or shrinkage. 

Measuring a nodule is a complex task, subject to many variations. It depends on the anatomical plane used for the measurement and the inclination of the nodule itself. In addition, we wanted the measurements to be volumetric and reproducible. With all these factors in mind, we decided to use software. 

We are also involved in a lung cancer screening program at Médipôle – in France, studies are currently being carried out in this field. At Imapôle Lyon Villeurbanne, we have a large pneumology department, and we wanted to offer a solution that was reproducible, efficient and independent of the operator behind the screen. 

Of the various solutions we had identified, contextflow was one of the three finalists, and appeared to be the most efficient and comprehensive, meeting our needs.

What were the selection criteria and what preliminary evaluations were carried out before choosing contextflow’s software for your radiology department?

We explored the market to find solutions suited to our mission, which is to detect and monitor lung nodules over time. We also took into account other criteria such as the time taken to return results. It was essential that the analysis could be carried out quickly, with a return to the PACS and the doctor in around five minutes, in order to maintain our patient management flow. After a comparison of contextflow to other vendors, we chose contextflow because it offers more than just nodule detection and integrates very well into our PACS. 

The other point that was a “game changer” in our choice was contextflow’s ability to look ahead and offer incidental pulmonary embolism detection in the near future. This gives us a tool capable of responding to several of our problems, particularly in oncology, for long-term monitoring, analysis and reproducibility of measurements, as well as analysis and quantification of other pulmonary pathologies like emphysema.

Can you retrace the history of the integration of contextflow’s software in your radiology department, from its implementation to the present day?

contextflow’s technical teams have been extremely responsive. We were able to put them in touch with our IT and PACS teams, and all three teams quickly managed to install the virtual machine to carry out all the tests. We had a fairly tight deadline to achieve a level of integration that would enable us to use the system seamlessly without the doctor having to leave his environment. This was a key factor.

contextflow’s solution is fully integrated into our workflow. Sending is automatic from the modality to the AI solution, and the results are sent back to the PACS. So when the doctor reads the examination, they have the contextflow results at their fingertips. The technical support provided by the teams during the start-up phase was extremely responsive, which is very positive for contextflow. The level of integration with PACS is very high.

What were the key stages in the process of implementing contextflow’s software in your radiology department in terms of training, customization and change management?

As far as contextflow is concerned, training took place in two stages. First, there was a preliminary training session which essentially consisted of a product presentation, followed by a second session where the application of the product in clinical routine was presented. We examined a concrete case and analyzed the results obtained. This training was given by videoconference on different dates to suit the availability of the various doctors involved in the project, which was much appreciated. We were able to start using the solution with remote support from both contextflow and our IT and PACS teams. Everything went very smoothly.

After about a month’s use, contextflow offered to accompany our medical teams on site to benefit from their experience. This would also enable us to make personalized adjustments to the use of the product and help discover functionalities that might not have been fully grasped during the initial training sessions.

This support is still ongoing. An application engineer will come next week to meet our teams, and he will also come back if the doctors feel the need. 

Now, as far as contextflow is concerned, the big advantage is that it is not limited to detecting and monitoring nodules over time, which is essential and very important for lung cancer screening, for example, and for monitoring smokers. Rather, it also offers analysis of other pathologies, notably emphysema, which is a very important quantification, especially with a view to the future. 

In the future, it will also enable the detection of incidental pulmonary embolism, a crucial diagnosis in radiology. At Medipôle Lyon Villeurbanne, the largest private emergency department in France, we see around 250 patients a day, about half of whom go through the imaging department, and many of whom benefit from a CT scan. We’re very pleased to be supported by AI-based detection software for these 250 patients because radiologists’ workload is ever-increasing. You end up with 400 to 500 images to analyze per patient. So it’s great to have an artificial intelligence that can accompany you in this detection phase and highlight areas at risk.

That’s why contextflow’s ability to handle new pathologies to be analyzed was a decisive factor in our choice of solution.

How was contextflow’s software integrated into Imapôle’s existing radiology information system to ensure compatibility, interoperability and synchronization of clinical data?

What’s most important is the whole preparatory integration phase. This involves a considerable amount of work over several weeks, during which all the players involved can discuss technical constraints. The end users, in particular the radiologists, can express their expectations and objectives, particularly in terms of how they wish to find the results in his workflow.

The success of this stage is reflected in the fact that, in the end, the radiologist doesn’t need to leave their usual work environment. They open their PACS and work within it – the contextflow results are there without having to open a new program or change windows. The user is not confronted with a totally different interface. In addition, contextflow’s results can be adapted by the radiologist when they disagree, for example, in the case of a false positive nodule. The more transparent we can make the use of contextflow within the PACS and the more successful the integration, and the more the radiologist will use it.

How do you measure the overall satisfaction of contextflow users in your radiology department in terms of user-friendliness, performance and contribution to clinical decision-making?

Every click costs radiologists time and money, so having a well-integrated AI solution with as few clicks as possible was a priority for us. This is a key element in the use of the solution. If we suggest to a radiologist (who is already very busy and subject to the heavy mental workload linked to medical image analysis) additional constraints such as having to navigate between different windows or files, it’s certain that the solution will not be used. They may try it once or twice but will soon realize that it’s time-consuming, and they’ll end up saying to themselves “I’ll do without it” and never come back to it.

If, on the other hand, the whole process is automated, (i.e. the images are acquired by the scanner, automatically sent to contextflow for analysis, and results are sent back to the radiologist in their native working environment) then all they have to do is validate or invalidate the AI’s results for inclusion in the report. The number of clicks is reduced to a minimum. This makes the system extremely user-friendly. What’s more, the degree of integration of the solution with our PACS is extremely advanced, making our dependence on the solution even more beneficial.

What performance indicators and evaluation criteria are used to measure the effectiveness and clinical impact of contextflow’s software in your radiology department?

In terms of our prescribing physicians, we have a large number of pulmonologists and pulmonary oncologists in our department. So we have a team of doctors who specialize in lung diseases. They have been very satisfied with the contextflow software at an advanced level of pulmonary analysis, especially here in Lyon. They have particularly appreciated the ability to detect and track lung nodules over time and to compare results.

When a patient is sent for assessment after three or six months of chemotherapy, it is extremely valuable to have a tool like contextflow to ensure reproducibility of analysis and measurements. This has really been a major asset for our prescribing physicians.

Today, the use of the tool is practically demanded by prescribers, as they have become accustomed to its use. They therefore refer their patients to our center so that their scans can benefit from this additional in-house analysis. As far as our own doctors are concerned, as I mentioned earlier, the more transparent the interface in the workflow, the more it is used. As a result, 100% of lung scans now go through contextflow, benefiting from both medical and AI-assisted dual analysis. 

The feedback we’ve had from talking to doctors clearly shows that the tool has been adopted and used in the same way as the other AI tools we have in our fleet. We have a team of doctors who are forerunners in the adoption of AI, and they are aware of the benefits that artificial intelligence can bring them.

How would you like to see the contextflow solution evolve in the future?

I would love to see contextflow provide a solution for the detection of pulmonary embolism, as this is a real need for all emergency medical imaging departments. This will be of considerable help to emergency physicians and doctors, speeding up patient management and reducing the time lost in analysis. The contextflow team took our feedback seriously and is working towards this.

Still, we are very satisfied with the current solution. contextflow is continuously  improving the specificity and sensitivity of the nodule detection algorithm. Next, they plan to extend the possibilities of thoracic pathology analysis, not only for the lungs, but also for the vessels and heart, as well as for all organs located in the thoracic region. If contextflow could also provide analysis for these elements in the future, that would be a real asset.

AI is seen as the future, but it also raises fears. As a user, you may be both enthusiastic and reticent about certain applications. However, as a human being, you are aware of the implications and limits of AI. It can open the door to a wide range of possibilities. What is your opinion on this subject?

In today’s world, where everything is evolving rapidly – much faster than a human being can adapt – data, both medical and non-medical, is multiplying exponentially. The analysis of this data must also be multiplied.

However, human beings do not have the capacity to adapt instantly to such a flow of data. We may be able to do so in X years’ time, but today, we need solutions that support us in managing this data flow. Sorting and analyzing this data and information is crucial.

As far as I’m concerned, I can say that AI can raise concerns in certain areas. However, I believe that AI will not replace doctors. This is a fact that I have experienced by using these solutions for several years and observing them in our practice.

What is certain, however, is that the doctor who uses AI will replace the doctor who does not. And therein lies the real challenge. The world has evolved faster than human beings can adapt. It therefore needs technological tools. So, the doctor who integrates AI into his practice will surpass the doctor who doesn’t, plain and simple.

Other News

Plus qu’une simple détection de nodules…
2023-08-31

Les radiologues du groupe Imapôle Lyon-Villeurbanne bénéficient du support de l’IA de contextflow pour détecter les anomalies pulmonaires.

L’Imagerie Médicale, pilier central de la médecine moderne, est devenue incontournable aujourd’hui. Véritable pierre angulaire du diagnostic patient, elle le sera encore plus demain. Tourné vers le futur, Imapôle Lyon–Villeurbanne, le service d’Imagerie Médicale du plus grand établissement de santé privé de la région lyonnaise, le Médipôle Lyon-Villeurbanne, s’inscrit pleinement dans cette démarche et, dans cette optique, a intégré contextflow ADVANCE Chest CT dans sa routine clinique. Pour mieux comprendre les motivations de l’adoption de contextflow, les critères de sélection, l’expérience de déploiement et les bénéfices observés, nous avons rencontré Samir Lounis, CEO & General Manager chez ImaOne. Il dirige et pilote l’activité du groupe Imapôle.

Bonjour. Pourriez- présenter Imapôle Lyon-Villeurbanne ?

Le groupe Imapôle est composé de 10 radiologues. Ils sont chargés d’interpréter la production d’images médicales de deux sites : Le Médipôle Lyon Villeurbanne, le plus grand hôpital privé d’Europe avec plus de 850 lits, et le Pôle Médical d’OL Vallée à Décines. 

Ces deux sites réalisent plus de 800 examens par jour et environ 170 000 examens par an.

Notre équipe gère cette charge de travail, et nous sommes fortement engagés dans l’utilisation de solutions d’intelligence artificielle.

Nous croyons fermement en leur potentiel pour soutenir nos radiologues et les transformer en “radiologues augmentés” grâce à l’IA, afin d’une part, pouvoir fournir des diagnostics plus précis et d’autre part, pouvoir gérer un volume d’examens beaucoup plus important.

Quelles ont été les motivations et les facteurs déterminants qui ont conduit votre département de radiologie à envisager l’adoption de l’application contextflow dans votre pratique clinique à Imapôle Lyon-Villeurbanne ?

Au sein d’Imapôle, une part importante de notre activité concerne la cancérologie, environ un tiers. Cela implique que nous devons interpréter un grand nombre d’images, en particulier des scanners, pour le suivi ou la détection de pathologies chez nos patients.

Dans ce contexte, nous avons cherché une solution qui puisse nous aider à dépister les lésions et à suivre leur évolution en termes de taille, notamment en ce qui concerne la croissance ou la diminution des lésions. 

Mesurer une lésion est une tâche complexe et sujette à de nombreuses variations. Cela dépend du plan de coupe utilisé pour la mesure et de l’inclinaison de la lésion elle-même, par exemple dans le cas d’une lésion pulmonaire.

De nombreux facteurs entrent en jeu. Nous souhaitions donc que cette mesure puisse  être volumétrique et reproductible.

Partant de tous ces éléments, nous avons décidé d’utiliser un logiciel. Nous sommes également impliqués dans un programme de dépistage du cancer du poumon au sein du Médipôle.

En France, des études sont actuellement menées dans ce domaine. Au sein d’Imapôle Lyon Villeurbanne, nous disposons d’un département de pneumologie important et nous avons voulu proposer une solution reproductible, efficace et indépendante de l’opérateur qui se trouve derrière l’écran.

Parmi les différentes solutions que nous avions identifiées, le logiciel de contextflow, qui figurait parmi les trois finalistes, nous a paru être le plus performant et le plus complet, répondant ainsi à nos besoins.

Quels ont été les critères de sélection et les évaluations préliminaires effectués avant de choisir l’application contextflow pour votre département de radiologie ?

Nous avons exploré le marché pour rechercher des solutions adaptées à notre mission, qui consiste à détecter et suivre les lésions pulmonaires dans le temps, tout en tenant compte d’autres critères tels que le délai de retour des résultats. Il était essentiel que l’analyse puisse être réalisée rapidement, avec un retour dans le PACS et vers le médecin dans un délai de l’ordre d’environ cinq minutes, afin de maintenir notre flux de prise en charge des patients. Après avoir comparé contextflow à d’autres fournisseurs, nous avons choisi contextflow parce qu’il offre plus que la simple détection de nodules et qu’il s’intègre très bien dans notre PACS. 

L’autre point qui a été un « game changer » dans notre choix, c’est la capacité de contextflow à pouvoir se projeter et proposer, dans un avenir proche, la détection des embolies pulmonaires fortuites.

Nous disposons ainsi d’un outil capable de répondre à plusieurs de nos problématiques, notamment en cancérologie, pour le suivi à long terme, l’analyse et la reproductibilité des mesures, ainsi que l’analyse et la quantification d’autres pathologies pulmonaires comme l’emphysème.

Pouvez-vous retracer l’historique de l’intégration de l’application logicielle contextflow dans votre département de radiologie, depuis sa mise en place jusqu’à aujourd’hui ?

Les équipes techniques de contextflow ont été extrêmement réactives. Nous avons pu les mettre en relation avec nos équipes IT et PACS, et les trois équipes ont rapidement réussi à installer la machine virtuelle pour effectuer tous les tests. Nous avions un délai assez court pour atteindre un niveau d’intégration qui nous permettrait une utilisation transparente, sans que le médecin ne quitte son environnement. C’était un élément clé. 

La solution contextflow est entièrement intégrée dans notre flux de travail. Les envois se font automatiquement de la modalité vers la solution d’IA, et les résultats sont renvoyés dans le PACS. Ainsi, lorsque le médecin prend connaissance de l’examen, il dispose des résultats de contextflow. 

L’accompagnement technique et le support des équipes lors du démarrage ont été extrêmement réactifs, ce qui est très positif pour contextflow. Le niveau d’intégration avec notre PACS est très élevé.

Quelles ont été les étapes clés du processus de mise en œuvre de l’application contextflow dans votre département de radiologie en termes de formation, de personnalisation et de gestion du changement ?

En ce qui concerne contextflow, la formation s’est déroulée en deux étapes. Tout d’abord, il y a eu une formation préliminaire qui consistait essentiellement en une présentation du produit, puis une deuxième partie où l’application du produit a été présentée. Nous avons examiné un cas concret et analysé les résultats obtenus. Cette formation a été dispensée en visioconférence à différentes dates, afin de convenir aux disponibilités des différents médecins impliqués dans le projet, ce qui a été très apprécié. 

Nous avons pu démarrer l’utilisation de la solution avec un accompagnement à distance, si nécessaire, tant de la part de l’équipe de contextflow que de notre équipe IT et PACS. Tout s’est très bien passé.

Après environ un mois d’utilisation, contextflow nous a proposé d’accompagner nos équipes médicales sur site, afin de bénéficier de leur expérience. Cela permettrait également d’apporter des ajustements personnalisés à l’utilisation du produit et de leur faire découvrir des fonctionnalités qu’ils n’auraient peut-être pas saisies lors des premières formations.

Cet accompagnement est toujours en cours. Nous aurons un technicien de l’application qui viendra la semaine prochaine pour rencontrer nos équipes. Il pourra également revenir si les médecins en ressentent le besoin. Maintenant, en ce qui concerne contextflow, le gros avantage est qu’ils ne se limitent pas à la détection et au suivi des nodules dans le temps, ce qui est essentiel et très important pour le dépistage du cancer du poumon, par exemple, et le suivi des fumeurs. Mais, au contraire, il permet aussi d’analyser d’autres pathologies, notamment l’emphysème, ce qui est une quantification primordiale, surtout dans une perspective d’avenir.

À l’avenir, il permettra également de détecter les embolies pulmonaires fortuites, un diagnostic crucial en radiologie. Au Medipôle Lyon Villeurbanne, le plus grand service d’urgence privé de France, nous recevons environ 250 patients par jour, dont la moitié environ passe par le service d’imagerie, et beaucoup d’entre eux bénéficient d’un scanner. 

Nous sommes très heureux d’être soutenus par un logiciel de détection basé sur l’IA pour ces 250 patients, car la charge de travail des radiologues ne cesse d’augmenter. On se retrouve avec 400 à 500 images à analyser par patient. C’est donc une bonne chose d’avoir une intelligence artificielle qui peut vous accompagner dans cette phase de détection et mettre en évidence les zones à risque.

C’est pourquoi la capacité de contextflow à prendre en charge de nouvelles pathologies à analyser a également été un facteur déterminant dans le choix de la solution.

Comment l’application contextflow a-t-elle été intégrée dans le système d’information radiologique existant à l’Imapôle, pour assurer la compatibilité, l’interopérabilité et la synchronisation des données cliniques ?

Ce qui est le plus important, c’est toute la phase préparatoire d’intégration. Cela nécessite un travail considérable qui s’étend sur quelques semaines, pendant lesquelles tous les acteurs impliqués peuvent échanger sur les contraintes techniques. L’utilisateur final, notamment le médecin, peut exprimer ses attentes et objectifs, en particulier sur la manière dont il souhaite retrouver les résultats dans son flux de travail.

La réussite de cette étape se traduit par le fait que, finalement, le médecin n’a pas besoin de quitter son environnement de travail habituel. Il ouvre son PACS et y travaille – les résultats contextuels sont là sans avoir à ouvrir un nouveau programme ou à changer de fenêtre. L’utilisateur n’est pas confronté à une interface totalement différente. En outre, les résultats de contextflow peuvent être adaptés par le radiologue en cas de désaccord, par exemple dans le cas d’un nodule faussement positif.

Plus on parvient à apporter de transparence dans l’utilisation de contextflow au sein du PACS, plus l’intégration est réussie et plus le médecin l’utilisera régulièrement.

Comment mesurez-vous la satisfaction globale des utilisateurs de l’application contextflow au sein de votre département de radiologie en termes de convivialité, de performance et de contribution à la prise de décision clinique ?

Chaque clic coûte du temps et de l’argent aux radiologues, c’est pourquoi il était prioritaire pour nous d’avoir une solution d’IA bien intégrée avec le moins de clics possible.

C’est un élément clé dans l’utilisation de la solution.

Si l’on propose à un médecin, qui est déjà très occupé et soumis à une charge mentale importante liée à l’analyse médicale, des contraintes supplémentaires telles que de devoir naviguer entre différentes fenêtres ou dossiers, il est certain que la solution ne sera pas utilisée. Il peut l’essayer une ou deux fois, mais rapidement, il se rendra compte que cela lui prendra du temps et il finira par se dire : “Je vais m’en passer” et il n’y reviendra plus.

En revanche, si l’on automatise l’ensemble du processus, c’est-à-dire que les images sont acquises par le scanner, envoyées automatiquement à l’IA de contextflow pour analyse, que les résultats sont renvoyés au médecin dans son environnement de travail et qu’il n’a plus qu’à valider ou invalider les résultats de l’IA pour les intégrer dans son compte rendu, alors le nombre de clics est réduit au minimum.

Cela permet une convivialité très appréciable. De plus, le degré d’intégration de la solution dans notre PACS est extrêmement poussé, ce qui rend notre dépendance à la solution encore plus bénéfique.

Quels sont les indicateurs de performance et les critères d’évaluation utilisés pour mesurer l’efficacité et l’impact clinique de l’application contextflow dans votre département de radiologie ?

Au niveau de nos prescripteurs, nous avons une grande quantité de pneumologues et de pneumologues-oncologues au sein de notre pôle. Nous avons donc une équipe de médecins spécialisés dans les affections pulmonaires. Ils ont été très satisfaits de l’application contextflow à un niveau avancé de l’analyse pulmonaire, notamment ici à Lyon. Ils ont particulièrement apprécié la capacité de détecter et de suivre les pathologies pulmonaires dans le temps, ainsi que la possibilité de comparer les résultats.

Lorsqu’un patient est envoyé pour une évaluation après trois ou six mois de chimiothérapie, il est extrêmement précieux de disposer d’un outil tel que contextflow pour assurer la reproductibilité de l’analyse et des mesures. Cela a réellement été un atout majeur pour nos médecins prescripteurs.

Aujourd’hui, l’utilisation de l’outil est demandée presque systématiquement par les médecins prescripteurs, car ils se sont habitués à son utilisation. Ils orientent donc leurs patients vers notre centre afin que leurs examens puissent bénéficier de cette analyse complémentaire en interne. En ce qui concerne nos propres médecins, comme je l’ai mentionné précédemment, plus l’interface dans le flux de travail est transparente, plus elle est utilisée.

Ainsi, à l’heure actuelle, 100 % des scanners pulmonaires passent par contextflow, bénéficiant ainsi d’une double analyse à la fois médicale et assistée par IA. 

Les retours que nous avons obtenus en discutant avec les médecins montrent clairement que l’outil a été adopté et utilisé de la même manière que d’autres outils d’IA que nous avons dans notre parc. Nous avons une équipe de médecins précurseurs dans l’adoption de l’IA, et ils sont conscients des avantages que peut leur apporter l’intelligence artificielle.


Comment aimeriez-vous que la solution contextflow évolue à l’avenir ?

J’aimerais beaucoup que contextflow apporte une solution pour la détection d’embolie pulmonaire, car c’est un besoin réel pour tous les services d’imagerie médicale d’urgence. Cela aidera considérablement les urgentistes et les médecins, accélérant ainsi la prise en charge des patients et réduisant le temps perdu lors de l’analyse. L’équipe de contextflow a pris nos remarques au sérieux et travaille dans ce sens.

Nous sommes très satisfaits de la solution actuelle. contextflow améliore continuellement la spécificité et la sensibilité de l’algorithme de détection des nodules. Ensuite, nous envisageons d’étendre les possibilités d’analyse des pathologies thoraciques, pas seulement pour les poumons, mais également pour les vaisseaux et le cœur, ainsi que pour tous les organes situés dans la région thoracique. 

Si à l’avenir, contextflow pouvait également fournir une analyse pour ces éléments, ce serait un véritable atout.

L’IA est considérée comme l’avenir, mais elle suscite également des craintes. En tant qu’utilisateur, vous pouvez être à la fois enthousiaste et réticent vis-à-vis de certaines applications. Cependant, en tant qu’être humain, vous êtes conscient des implications et des limites de l’IA. Cela peut ouvrir la porte à diverses possibilités. Quelle est votre opinion sur ce sujet ?

Dans notre monde où tout évolue rapidement, bien plus rapidement que la capacité d’adaptation d’un être humain, les données, qu’elles soient médicales ou non médicales, sont multipliées de façon exponentielle. L’analyse de ces données doit donc également être multipliée.

Cependant, les êtres humains n’ont pas la capacité d’adaptation instantanée à un tel flux de données. Peut-être serons-nous capables de le faire dans X années, mais aujourd’hui, nous avons besoin de solutions qui nous accompagnent dans la gestion de ce flux de données. Il est crucial de trier et d’analyser ces données et informations.

En ce qui me concerne, je peux dire que l’IA peut susciter des inquiétudes sur certains aspects. Cependant, je pense que l’IA ne remplacera pas les médecins. C’est un fait que j’ai expérimenté en utilisant ces solutions depuis plusieurs années et en les observant dans notre pratique.

En revanche, ce qui est certain, c’est que le médecin qui utilise l’IA remplacera le médecin qui n’utilise pas cette technologie. C’est là que réside le véritable enjeu. Le monde a évolué plus rapidement que la capacité d’adaptation de l’être humain. Il a donc besoin d’outils technologiques. Ainsi, le médecin qui intègre l’IA dans sa pratique surpassera le médecin « tout court ».

Other News

More information and higher diagnostic reliability thanks to AI
2023-05-24

Isala overcomes daily challenges with contextflow ADVANCE Chest CT

Health economists predict that the number of patients in Western Europe will double in the next 20 to 25 years. This will of course affect radiology, which will have to prepare for a corresponding increase in the number of examinations and findings. “If the predictions come true, we will have to become more efficient in what we do – as I do not expect the same growth in the number of radiologists. I see artificial intelligence (AI) as part of the possible solution. This applies not only to radiology, but to all activities along the care process,” says Dr. Martijn F. Boomsma, Radiologist at Isala in Zwolle. The Isala hospital group also operates smaller facilities in Meppel, Steenwijk, Kampen and Heerde. The group has a total of 1,200 beds and is one of the largest non-academic teaching hospitals in the Netherlands. The department of Medical Imaging at Isala examines over 1,200 radiological examinations per day.

The Dutch Radiological Society has also defined AI as one of the four most important developments for the next decade, and indeed radiology is already a pioneer in the application of this technology. And that’s a good thing, says Dr. Boomsma: “AI, in combination with an experienced radiologist, increases diagnostic accuracy because it can effectively support and relieve radiologists in certain aspects.” However, clinics and manufacturers would have to prove that the algorithms have a concrete positive impact on health outcomes. This could greatly improve clinical adoption as it would make a clear case for reimbursement for AI and getting AI into national guidelines. Dr. Boomsma believes his discipline is on the right track, even if it still faces a number of hurdles.

Committed partnership at eye level

The department of Medical Imaging has been using diagnostic AI applications for four years and has been using contextflow ADVANCE Chest CT since the end of 2022. Isala runs the solution on its own servers and has integrated it with its image data management system (PACS) from Sectra.

Implementing the AI algorithms was not a plug-and-play process. The hurdle was not only the vendors, but also internal processes. “We had to convince several parties and get the go-ahead from many echelons before we could start. It took a year before the application was really ready for operation, fully integrated, reliable, and with an uptime of 97 percent. The technical integration was then very simple and straightforward,” says Dr. Boomsma. This process requires a lot of commitment and perseverance from everyone involved. But it is also the point at which trust is built. “This is where true partnership shows itself, and we are still experiencing this with contextflow,” the radiologist is pleased to say. 

Dr. Boomsma also notes contextflow’s effort to continuously develop its solution in close cooperation with its users in order to optimize the workflow and thus increase diagnostic value. “This was also a decisive reason for us to choose contextflow. We see a high level of professionalism and agility, as well as the company’s vision to get the best out of AI in thoracic imaging,” he reports. This is also evident in their day-to-day interactions. “Employees respond promptly to inquiries and problems by phone or email. To this end, they always think in terms of solutions and work to solve problems as quickly as possible,” the radiologist elaborates. ADVANCE Chest CT itself stands out because it can be operated without much training. “With a little practice, you can use the software very quickly; it’s user-friendly. But it also changes the way you look at things,” Dr. Boomsma says.

Valuable support for the findings

Dr. Boomsma has developed his own approach to using the AI software. First, he looks at the key images and obtains a global overview. Then he reads the scan, incorporating the referring physician’s specific questions into the findings and preparing his report. “ADVANCE Chest CT helps me identify and quantify nodules. This allows me to clearly identify whether the disease is progressive or stable. Of course, I can also discard or change individual results I don’t consider relevant, as they are false positives or do not relate to the specific question,” says Dr. Boomsma, explaining his workflow. Not only does he use the AI for pulmonary nodules, but also for the detection and quantification of emphysema.

Meanwhile, ADVANCE Chest CT is an important support for reporting at Isala. “On an CT image without contrast, it is very difficult to find a four-millimeter lesion in the perihilar region. But the system reliably shows it to me. It allows me to make sure I haven’t missed anything. It also helps us in our daily work. For example, it is reassuring to know that the AI is always by your side during a nighttime emergency scan and to be sure that everything important can be reported,” says Dr. Boomsma. He also sees the potential to speed up the reporting of findings, citing scans without significant findings as an example. The algorithm can mark these as such, so that the radiologist only has to check them once and can then concentrate on more complex cases.

More than other AI algorithms

“ADVANCE Chest CT gives me much more information than AI solutions from other vendors. It detects and quantifies nodules, emphysema and also fibrosis. The precise information on the extent of manifestation of suspected pathology adds real value to the findings because it can be indicative and correlate with the patient’s condition and  may guide the need for therapy,” emphasizes Dr. Boomsma. Consistency of findings in general remains a challenge, due to different scan settings, inspiration etc. He highlights ADVANCE Chest CT’s SEARCH feature as another unique selling point. With a single mouse click, an overview of similar cases opens from an extensive database, which radiologists can use to support their diagnosis.

The TIMELINE module is a further facilitator. It clearly visualises the changes in the detected nodules over time showing the percentage of growth as well as the time of volume doubling. This is particularly helpful when preparing for tumour boards and multidisciplinary meetings. The integration with the Sectra PACS gives the potential to seamlessly incorporate the results into the report.

Other News

AI Interest Group for Imaging (AIGI) Task Force
2023-08-07

The “Interest Group for AI in Imaging” (AIGI) started its work in January and advocates the optimization and greater use of IHE profiles when using AI (Artificial Intelligence). 

AI applications are slowly becoming the standard in radiological reporting, but there’s a lack of standardization when it comes to the implementation of AI. Two IHE (Integrating the Healthcare Enterprise) integration profiles already exist (IHE AIW-I & IHE AIR) for the integration of artificial intelligence (AI) and its communication with DICOM data, but so far there are only very few implementations in current products visible. Thus, Marc Kämmerer, member of the IHE Europe Steering Committee and Head of Innovation Management at VISUS Health IT GmbH, initiated AIGI.

What is AIGI?

AIGI is a task force of IHE Europe consisting of radiology AI users, software and PACS vendors, marketplace operators as well as other interest groups. Its main interest and goal is to define the means for a standardized and applicable data workflow for actual use cases in European healthcare systems, including how to:

  • deploy and maintain AI applications
  • connect AI applications with end users’ systems
  • integrate the AI application output in end-users’ systems
  • collect and provide end user feedback

Examining the entire workflow between user and AI

The demand for standardization is high from all sides of the workflow equation. AIGI is examining the entire process chain between the user and the AI solution for practical applicability and feasibility on the basis of the profiles mentioned. Looking for holes in the existing standards, the group will create proposals and frameworks for improved, bi-directional data flow between AI and the user.

One initial area of focus: currently when a radiologist sends DICOM data to an AI software, there is no feedback as to how long it will take for the result to reach the PACS. Should the radiologist wait or start with the next patient? A status query could be integrated as standard via the IHE AIW-I profile, and that is exactly the type of question AIGI hopes to standardize.

The same applies to error messages, which previously only took the form of empty reports or system crashes. Similar to DICOM email, feedback should be given here as to whether and what type of error has occurred. In terms of interoperability, the content of these messages would have to be defined so that they have the same meaningfulness independent of the display system. 

Another example: When reporting, it can make sense to play certain evaluations prominently on the surface – for example, degrees of malignancy in mammography. In principle, this is possible via DIOCM-SR objects, but here too the challenges lie in the details.

Simplified AI access for all

“Working on these standards is very important in order to implement binding structures in the AI ​​processes as early as possible. We are currently noticing that many AI providers and AI marketplace operators are working with APIs. However, it is impossible for PACS manufacturers to use all the APIs available on the market. There are currently well over 20 AI marketplace operators and several hundred AI providers. Here we have to find solutions quickly that ultimately benefit everyone involved – manufacturers and users. From the positive response to our task force, we can see that fortunately all parties involved see things the same way. And it didn’t take long for the IHE to convince the group to set up the group,” says Marc Kämmerer, pleased with the response from industry and practice.

contextflow is a proud supporter of AIGI. Currently we are participating in the subgroup related to Longitudinal Data, Reporting, and Pseudo-/Anonymization. The AIGI Taskforce is open to additional members. Its intended output are best practice white papers, correction proposals, and work item proposals to ultimately benefit users, PACS and AI manufacturers and AI marketplace operators. For more information, click here.

Other News

contextflow approved for EIC Accelerator Equity Investment
2023-06-22

We are beyond thrilled to announce that contextflow’s application for the European Innovation Council (EIC) Accelerator equity investment program has been accepted!!!

The latest round of EIC funding saw stiff competition: 139 companies were interviewed by juries of experienced investors and entrepreneurs, out of a total of 551 full proposals submitted. We are the only Austrian company selected in the latest round of funding.

contextflow’s history with the EIC dates back to 2020, when we became the fortunate recipients of a €1.2 Million EIC grant. This shows a clear commitment from the European Commission to support European-born companies with cutting-edge innovation over the long-term. The trust bestowed upon us does not go unnoticed; the best way to show gratitude is to continue to develop our comprehensive clinical decision support for chest CT to enable radiologists to perform their routine tasks faster and with higher certainty and accuracy.

An additional HUGE thanks our early supporters and stakeholders for taking us from university spinoff to the 40+ member team we are today.

Technische Universität Wien
Medizinische Universität Wien
TU Wien Innovation Incubation Center (i²c)
INiTS | Vienna’s High-Tech Incubator
Health Hub Vienna
LISAvienna – Life Science Austria Vienna
FFG Österreichische Forschungsförderungsgesellschaft mbH
Vienna Business Agency
Austria Wirtschaftsservice

Special personal thanks to Angelo Nuzzo, PhD, MBA, MA, Birgit Hofreiter, Alexandra Negoescu & Irene Fialka for guiding us from the very beginning. We couldn’t have done it without your support!

Other News

Radiology Symposium Mainz returns for a 2nd year
2023-08-09

An impressive crowd at this year’s Radiology Symposium Mainz! For a second year running, we gathered at the Bootshaus Mainz at the end of June to discuss current radiology AI topics.

Thank you to our fabulous radiology speakers & partners, starting with host Prof. Dr. med. Peter Mildenberger from University Medical Center Mainz. Univ.-Prof. Dr. med. Christoph Düber, Prof. Dr. med. Mike Notohamiprodjo, Elodie Weber, Erwin Krikken, Karin Klein, Marcel Wassink, Mark Rawanschad, PD Dr. Christian Elsner, Florian Brandt, Knut Dietrich-Thiel, Bernd Schütze, Alex Lemm, Barbara Lampl, PD Dr. Daniel Pinto dos Santos, Prof. Dr. med. Elmar Kotter, medavis GmbH, EIZO Healthcare, DFC-SYSTEMS GmbH.

We would also like to thank our friends at Sectra for their continued collaboration!

Hope to see you again next year!

Other News

Save time and improve diagnostic quality
2023-05-17

contextflow ADVANCE Chest CT improves lung diagnostics at St. Bernhard-Hospital Kamp-Lintfort

PD Dr. Hilmar Kühl was employed at the University Medical Center Essen for 16 years, half of this time at the Ruhrlandklinik, the major West German lung center. He now brings this expertise to bear as head physician of the Department of Radiology at St. Bernhard-Hospital Kamp-Lintfort. The regional provider with 356 beds treats around 15,000 inpatients and 30,000 outpatients annually. 

As a recognized thoracic radiologist, Dr. Kühl draws his patients to Kamp-Lintfort from a fairly large area between Wesel, Neuss, Duisburg and Straelen. The requirements range from outpatient questions and the primary diagnosis of various lung diseases to the staging of bronchial carcinoma. Together with his team, he performs up to 1,500 chest CTs per year.

In 2015 while still at the University Medical Center Essen, the chief radiologist had his first contact with artificial intelligence (AI) methods in thoracic diagnostics. Since June 2022, he has been working with ADVANCE Chest CT, contextflow’s AI solution for detecting parenchymal changes in the lungs. “We are a member of the West German Teleradiology Network, which offers the solution via its AI marketplace. Via our image data management system (PACS) JiveX from VISUS, we can then use the algorithm on a pay-per-use basis,” Dr. Kühl explains the construct. Advantages: no software installation, guaranteed data protection and secure communication infrastructure.

Automated integration into the workflow

The radiologists at St. Bernhard Hospital have defined examinations that are always subject to analysis by the AI. As soon as the questions “chronic bronchitis”, “COPD”, “pulmonary skeleton changes” and “fibrosis” appear, the image data is automatically sent to the platform of the West German teleradiology network and analyzed with ADVANCE Chest CT. The result is also automatically fed back into the PACS. “These automations are extremely helpful because they save us time-consuming, manual activities,” says Dr. Kühl, citing one advantage of the process. “If our radiologists were to post-process and analyze the images, this would take up to ten minutes per examination. The AI analyzes a total of 19 image patterns in significantly less time and also provides me with differential diagnoses.” In addition, it is also possible to display reference images.

The chief radiologist particularly appreciates the integration of the algorithm into the workflow. “Every mouse click means extra work and costs time. We save that with the solution we use,” Dr. Kühl emphasizes. He is also impressed by the feedback, where all analysis results are clearly displayed on a PDF page. “This allows me to identify the relevant information very quickly and include it in the findings. The differential diagnoses are also very helpful.”

Added value for daily work

Lung parenchymal diseases, especially COPD with emphysema and interstitial parenchymal diseases, play a major role in diagnostics at St. Bernhard-Hospital Kamp-Lintfort. ADVANCE Chest CT detects and quantifies each of these pathologies. In selected patients, Dr. Kuehl applies a computer-assisted diagnosis (CAD) tool in addition to AI for comparison purposes. Using the CAD system does present challenges, however, as the chief radiologist elaborates: “That’s when we use two modules: One provides information on the extent of emphysema, the other identifies pulmonary nodules. In total, a radiologist is quickly occupied for 15 minutes. ADVANCE Chest CT delivers both results together – and even more, for example, information on infiltrates. This means an immense reduction in workload and time savings for us.”

In principle, AI solutions always raise the question of the data on which the learning process is based and how close they are to the ground truth, i.e. the verified clinical ground truth. This is particularly complicated as it relates to the differentiation of changes in the lung, where image impression and clinical relevance do not always coincide. On CT, various parenchymal patterns besides emphysema regularly come into play here, such as ground-glass opacities and honeycombing, as well as interstitial changes such as traction bronchiectasis or reticular patterns. “Quantification in particular supports the diagnosis and increases the certainty of the findings,” emphasizes Dr. Kühl.

Playing to the strengths of AI

In general, ADVANCE Chest CT helps him to produce a very high quality report in less time. The gain in speed primarily comes from quantifying the pathological changes, which must be done manually without IT support. Detection and quantification are crucial for therapy, which ranges from the application of a spray to surgery. “And if I can then provide the attending physician with reliable data, this increases the value of my findings in a relevant way and improves the therapy for the patient. Last but not least, this leads to increased satisfaction among clinicians and referring physicians,” says Dr. Kühl.

Radiologists also expect real added value when diagnosing rare diseases. Here the AI can support less experienced colleagues by pointing out possible differential diagnoses based on analyzed parameters – as ADVANCE Chest CT already does today. “This simplifies the path from pattern quantification to diagnosis. I’m offered a reference pattern and told in what percentage of cases it is verified with a specific disease. On the one hand, limiting the differential diagnoses simplifies the reporting, but on the other hand, it also raises the quality of the findings in a relevant way. This can make it possible to bring AI to a wider audience.” The work is facilitated by the fact that the software is self-explanatory and easy to use even after a brief introduction.

In the context of the close cooperation, PD Dr. Hilmar Kühl perceives contextflow as an extremely committed partner. “The company has a genuine interest in our feedback and values its clinical partners who use the software in their daily routine. Accordingly, contextflow has also supported me very well throughout the process.” It sounds like the collaboration has a bright future.

Other News

Befundungszeit sparen und Befundqualität heben
2023-06-07

ADVANCE Chest CT von contextflow verbessert Lungendiagnostik im St. Bernhard-Hospital Kamp-Lintfort

PD Dr. Hilmar Kühl war 16 Jahre lang an der Universitätsmedizin Essen beschäftigt, die Hälfte dieser Zeit an der Ruhrlandklinik, dem großen westdeutschen Lungenzentrum. Diese Expertise bringt er nun auch als Chefarzt der Klinik für Radiologie im St. Bernhard-Hospital Kamp-Lintfort ein. Der regionale Versorger mit 356 Betten versorgt jährlich rund 15.000 Patienten stationär und 30.000 ambulant. 

Als anerkannter Thoraxradiologe zieht Dr. Kühl seine Patienten aus einem recht großen Gebiet zwischen Wesel, Neuss, Duisburg und Straelen nach Kamp-Lintfort. Die Anforderungen reichen von ambulanten Fragestellungen und die Primärdiagnostik diverser Lungenerkrankungen bis zum Staging des Bronchialkarzinoms. Mit seinem Team befundet er bis zu 1.500 Thorax-CTs pro Jahr.

2015 hatte der Chefradiologe erstmals Berührung mit Verfahren der Künstlichen Intelligenz (KI) in der Thoraxdiagnostik, damals noch an der Universitätsmedizin Essen. Seit Juni 2022 arbeitet er nun mit ADVANCE Chest CT, der KI-Lösung von contextflow zur Detektion von Parenchymveränderungen der Lunge. „Wir sind Mitglied im Westdeutschen Teleradiologieverbund, der diese Lösung über seinen KI-Marktplatz anbietet Über unser Bilddatenmanagementsystem (PACS) JiveX von VISUS können wir den Algorithmus dann im Pay-per-Use-Verfahren nutzen“, erläutert Dr. Kühl das Konstrukt. Vorteile: keine Softwareinstallation, gewährleisteter Datenschutz und sichere Kommunikationsinfrastruktur.

Automatisiert in den Workflow integriert

Die Radiologen im St. Bernhard-Hospital haben CT-Untersuchungen definiert, die immer einer Analyse durch die KI unterzogen werden. Sobald die Fragestellungen „chronische Bronchitis“, „COPD“, „Lungengerüstveränderungen“ und „Fibrose“ auftauchen, werden die CT-Bilddaten automatisch an die Plattform des Westdeutschen Teleradiologieverbundes geschickt und mit ADVANCE Chest CT analysiert. Das Ergebnis wird ebenfalls automatisch in das PACS zurückgespielt. „Diese Automatismen sind extrem hilfreich, weil sie uns zeitraubende manuelle Tätigkeiten ersparen“, nennt Dr. Kühl einen Vorteil des Verfahrens. „Würden unsere Radiologen die Bilder nachbearbeiten und analysieren, würde das pro Untersuchung bis zu zehn Minuten dauern. Die KI analysiert in deutlich geringerer Zeit insgesamt 19 Bildmuster und liefert mir zudem Differenzialdiagnosen.“ Darüber hinaus ist es möglich, sich auch Referenzbilder anzeigen zu lassen.

Der Chefradiologe schätzt besonders die Integration des Algorithmus in den Workflow. „Jeder Mausklick bedeutet Mehrarbeit und kostet Zeit. Die ersparen wir uns mit der genutzten Lösung“, betont Dr. Kühl. Auch die Rückmeldung, bei der auf einer PDF-Seite alle Analyseergebnisse übersichtlich dargestellt sind, überzeugt ihn. „So kann ich sehr schnell die relevanten Informationen identifizieren und in den Befund aufnehmen. Sehr hilfreich sind auch die Differenzialdiagnosen.“

Mehrwerte für die tägliche Arbeit

Bei der Diagnostik im St. Bernhard-Hospital Kamp-Lintfort spielen die Lungenparenchymerkrankungen, insbesondere die COPD mit Emphysem und interstitielle Parenchymerkrankungen eine große Rolle. ADVANCE Chest CT detektiert und quantifiziert jede dieser Pathologien. Bei ausgewählten Patienten wendet Dr. Kühl neben der KI auch ein Tool zur computerassistierten Diagnose (CAD) zu Vergleichszwecken an. Die Verwendung des CAD-Systems bringt allerdings Herausforderungen mit sich, wie der Chefradiologe ausführt: „Da setzen wir dann zwei Module ein: Das eine liefert Aussagen zur Ausprägung des Lungenemphysems, das andere identifiziert Lungenrundherde. Insgesamt ist da ein Radiologe schnell 15 Minuten beschäftigt. ADVANCE Chest CT liefert beide Ergebnisse zusammen – und noch mehr, beispielsweise Angaben zu Infiltraten. Das bedeutet für uns eine immense Arbeitserleichterung und Zeitersparnis.“

Grundsätzlich stellt sich bei KI-Lösungen immer die Frage, auf welcher Datengrundlage der Lernprozess erfolgt bzw. wie dicht sie dabei an der sogenannten Ground Truth, also der verifizierten klinischen Grundwahrheit, sind. Gerade bei der Differenzierung von Veränderungen am Lungengerüst, wo sich Bildeindruck und klinische Relevanz nicht immer decken bzw. ähnliche klinische Symptome sehr verschiedene CT-Morphologie aufweisen können, ist das kompliziert. Im CT kommen hier regelhaft verschiedene Parenchymmuster neben dem Emphysem ins Spiel; wie etwa Milchglas-Infiltrate, Wabenbildungen sowie interstitielle Veränderungen wie Traktionsbronchiektasen oder retikuläre Muster. „Das löst contextflow mit seiner Lösung allerdings sehr gut. Gerade die Quantifizierung unterstützt die Diagnosestellung und erhöht die Befundsicherheit“, betont Dr. Kühl.

Stärken der KI ausspielen

Ganz allgemein hilft ihm ADVANCE Chest CT dabei, in kürzerer Zeit einen Befund von sehr hoher Qualität zu erstellen. Der Geschwindigkeitsgewinn ergibt sich primär bei der Quantifizierung der krankhaften Veränderungen, die ohne IT-Unterstützung manuell vorgenommen werden müssen. Detektion und Quantifizierung sind entscheidend für die Therapie, die von der Anwendung eines Sprays bis zur Operation reicht. „Und wenn ich dem behandelnden Arzt dann verlässliche Daten an die Hand geben kann, steigert das den Wert meines Befundes auf relevante Weise und verbessert die Therapie für den Patienten. Das führt nicht zuletzt zu einer steigenden Zufriedenheit der Kliniker und Zuweiser“, so Dr. Kühl.

Einen echten Mehrwert verspricht sich der Radiologe auch bei der Diagnostik seltener Erkrankungen. Da kann die KI besonders weniger erfahrene Kollegen unterstützen, indem der Algorithmus aufgrund analysierter Parameter auf mögliche Differenzialdiagnosen hinweist – so wie ADVANCE Chest CT es heute bereits tut. „Das vereinfacht den Weg von der Musterquantifizierung zur Diagnose. Mir wird ein Referenzmuster angeboten und gesagt, in wie viel Prozent der Fälle es mit einer spezifischen Erkrankung verifiziert ist. Die Einschränkung der Differenzialdiagnosen vereinfacht einerseits die Befundung, hebt andererseits aber auch die Befundqualität relevant an. Damit kann es gelingen, die KI in die Breite zu tragen.“ Erleichtert wird die Arbeit dadurch, dass die Software selbsterklärend und bereits nach einer kurzen Einführung leicht zu bedienen ist.

Im Rahmen der engen Zusammenarbeit nimmt PD Dr. Hilmar Kühl contextflow als äußerst engagierten Partner wahr. „Das Unternehmen hat ein wirkliches Interesse an unserem Feedback und schätzt seine klinischen Partner, die die Software in ihrem Routinealltag nutzen. Dementsprechend hat contextflow mich auch im gesamten Prozess sehr gut unterstützt.“ Das klingt danach, dass die Zusammenarbeit eine gute Zukunft hat.

Other News

contextflow in clinical use showcased at ECR 2023 in Vienna
2023-07-20

contextflow was featured in a few scientific presentations at the European Congress of Radiology (ECR) 2023 in Vienna showcasing the clinical efficacy of their ADVANCE Chest CT AI solution in lung disease diagnosis and its valuable insights for clinical decision-making.

One of the key research featured in the scientific presentation at the conference explored the relationship between lung volumetrics obtained from contextflow’s AI solution and lung function tests correlating with fibrosis progression. The combination of lung quantification values of reticulation and honeycombing, along with blood monocyte count, has been identified as a potential biomarker for predicting the progression of lung fibrosis within 12 months.

In another one, contextflow’s AI solution was shown to be effective in quantifying disease patterns in lung CT scans associated with individual mortality outcomes in idiopathic pulmonary fibrosis. The study revealed that lung volumetrics obtained from the AI solution were able to predict the outcomes of fibrotic patients. Both research showed the potential of contextflow’s AI solution as a valuable tool for predicting disease progression in patients with fibrotic lung diseases.

contextflow presented research comparing AI measures of emphysema with Hounsfield Unit (HU) emphysema measures. The study demonstrated that the AI solution provided accurate and reliable measures of emphysema, offering a promising alternative to traditional HU-based measurements.

Moreover, contextflow’s AI solution was found to be a valuable tool in predicting complications after CT-guided needle biopsy in the lungs, as presented by the team from Mainz in a study titled “Pre-interventional AI-supported Automated Lung Parenchyma Quantification Predicts Post-interventional Complications in CT-guided Lung Biopsies”. The study showed that lung volumetrics obtained from the AI solution could help identify patients at risk of post-interventional complications, allowing for better patient management and improved outcomes.

Finally, the team from Jönköping delivered a poster presentation on the use of contextflow’s ADVANCE Chest CT in clinical settings.The findings from the three-month follow-up indicate that the AI solution has the potential to significantly reduce reading times, with a reduction of 17% and 26% observed for emergency/in-house and elective exams respectively. The solution was in use for a relatively short time at the hospital, but it indicated the potential of the AI solution to streamline workflow and improve efficiency in clinical practice.

Other News

contextflow to bolster ADVANCE Chest CT with incidental pulmonary embolism (IPE)
2023-02-27

The inclusion of IPE will help strengthen the company’s offerings as a market leader in comprehensive computer-aided detection support for chest CT

28.2.23 Vienna, Austria – The Vienna-based chest experts at contextflow are announcing a new feature at this year’s European Congress of Radiology: incidental pulmonary embolism detection. According to Chief Product Officer Markus Krenn, “Radiologists requested the IPE feature because of the critical nature of pulmonary embolism. By fulfilling their request, we continue to build trust and help patients in the process.”

contextflow offers comprehensive computer-aided detection software for chest CT to support the diagnosis and treatment monitoring of lung cancer, ILD and COPD. IPE will be added to the company’s core product, ADVANCE Chest CT, which automatically detects, quantifies and visualizes 8 disease patterns including lung nodules, displaying relevant information directly in the radiologist’s PACS viewer. In addition, contextflow’s TIMELINE feature quickly and objectively tracks changes in lung nodules over time, currently a very difficult and time-consuming task for radiologists.

Incidental pulmonary embolism occurs when a patient is being scanned for reasons other than PE. Thus, there is a risk to the patient if there is any delay in reporting. The rates of missed IPE are relatively high, and it appears that more and more radiology departments are looking into tools to reduce these figures.

With this new feature, contextflow aims to increase the speed of care for patients with IPE and ensure radiologists get the comprehensive support for the assessment of chest CTs they need. Again Chief Product Officer Markus Krenn, “We work very closely with a group of practicing radiologists who provide us with a constant feedback loop. We take their requests very seriously, and will continue to add new features in the future accordingly.”

Other News