contextflow winner of the Healthy Hub competition from four health insurance companies: Innovative solutions for women’s health and early detection
2024-03-13

DORTMUND, 13.03.2024. The winners of the 2024 Healthy Hub Competition want to improve women’s health with innovative care. The various offers relate to different phases of life and clinical pictures – from hybrid tests against HPV viruses, to care for typical female diseases such as endometriosis, to innovative therapy for menopausal symptoms. People with lung diseases should receive better care in terms of early detection. The winning teams will each tackle these topics with one of the four health insurance companies – BIG direkt gesund, IKK Südwest, mhplus Krankenkasse and SBK Siemens-Betriebskrankenkasse. This is the fifth time that the health insurance companies have jointly organized the competition.

« This time, the focus was on selected contractual care solutions, which take into account the gender health gap, i.e. the inequality of care between women and men, » explains Dr. Elmar Waldschmitt, Managing Director of the Healthy Hub and Board Representative at BIG.  Unfortunately, medical research and care is still too heavily focused on men.

The winners were selected from over 40 applications:

Remi Health, health insurance partner BIG direkt gesund

Remi Health has developed a cervical cancer screening program that allows insured women to test themselves for human papillomavirus (HPV) at home. If the results are positive, an online consultation and an appointment with a gynecologist are provided. Remi’s digital platform also provides information about the importance of screening and early detection. « The low-threshold HPV test combines home testing, telemedicine and prevention in one seamless process, » explains Marvin Abert, Co-CEO of Remi Health. « In particular, we want to reach young women who have not yet taken advantage of cancer screening and have no immunity through an HPV vaccination. In our opinion, the HPV self-test from Remi Health is an innovative approach to complementing cancer screening in a meaningful way, » says Christiane Heidrich, Team Leader Managed Care at BIG direkt gesund.

Femna Health, health insurance partner SBK Siemens-Betriebskrankenkasse

Around a third of women of fertile age, i.e. in their fertile years, suffer from severely restrictive physical, psychological and social stress due to cycle complaints. These include conditions such as PMS, endometriosis and dysmenorrhea. « Current care does not adequately address these problems due to a lack of treatment options, long waiting times and a lack of individualized care. FEMNA has therefore developed a hybrid care model that provides women with improved, comprehensive and immediate care, » explains Maxie Matthiessen, founder of Femna Health. « Femna Care improves behavioral patterns and helps to prevent secondary diseases and increase the quality of life of affected women, » says Christina Bernards, Team Leader Care Management, SBK Siemens-Betriebskrankenkasse. « This is an issue close to our hearts, because women’s health in particular is massively neglected and underfunded in medicine and research. It’s time we changed that. »

YoniCare, health insurance partner mhplus Krankenkasse

With YoniCare (MICADO HEALTH CARE GmbH), the Healthy Hub has a non-digital care product in its portfolio for the first time. YoniCare enables laser therapy for the treatment of genitourinary syndrome. « The drop in estrogen levels during the menopause leads to vaginal dryness, changes in vaginal tissue and the vaginal mucosa and, as a result, symptoms such as itching, incontinence, infections and other complaints, » says Mandy Wilms from MICADO HEALTH CARE GmbH. The therapy can revitalize the vaginal epithelium that lines the vagina and the vaginal vestibule. The symptoms decrease and gynecological health is restored. « The therapy can make hormone replacement therapy superfluous and reduce interactions with medication, » says Fabienne Knaub, consultant for selective contracts and care analysis at mhplus Krankenkasse. 

contextflow, health insurance partner IKK Südwest

Early detection is essential for successful treatment of thoracic diseases. « We offer AI software that provides additional information for identifying and interpreting lung-specific image patterns in CT scans, » says Markus Holzer, CEO and co-founder of contextflow. The ultimate goal of the software is to detect lung cancer as early as possible in order to save healthcare system resources and protect patients from unnecessary interventions. « The image analysis AI enables radiologists to assess relevant image patterns of lung cancer and respiratory diseases faster and better, » says Dr. Florian Brandt, Health Innovation Manager at IKK Südwest. 

Developing use cases for healthcare practice

Over the next few months, the four health insurance companies will work with the winning teams to develop specific use cases that are suitable for use in statutory health insurance (SHI). « Our aim is to ensure that these innovative care methods are used in practice, » says Dr. Elmar Waldschmitt. In addition, the Healthyhub’s cooperation partner, GWQ ServicePlus AG, will be involved in the development from the outset. 

About the Healthy Hub

Since 2018, the four health insurance companies BIG direkt gesund, IKK Südwest, mhplus Krankenkasse and SBK Siemens-Betriebskrankenkasse have been committed to the digitalization of the healthcare system with the Healthy Hub. The aim is to enable innovative solutions for better, integrated care. To this end, the health insurance funds regularly organize competitions for start-ups. They have already brought 27 start-ups into the healthcare sector. 

About BIG direkt gesund 

BundesInnungskrankenkasse Gesundheit – BIG direkt gesund for short – was founded in Dortmund in 1996. The big idea behind BIG: We create space for being human. This means a modern online approach and empathetic service that is fast and solution-oriented. BIG offers versatile communication channels to suit the respective lifestyles of its around 510,000 policyholders across Germany. These customers receive appreciative and understandable advice by phone, chat, email or letter. Many additional benefits and an attractive bonus program are further major plus points. BIG direkt gesund has its legal domicile in Berlin, its head office in Dortmund and an important administrative location in Aachen. BIG employs around 950 staff at its operating locations and offers on-site advice in 11 BIGshops.

For inquiries

Bettina Kiwitt

Head of Corporate Communications

Phone: 0231/5557-1016

E-mail: bettina.kiwitt@big-direkt.de

About IKK Südwest:

IKK Südwest currently serves more than 635,000 insured persons and over 90,000 companies in Hesse, Rhineland-Palatinate and Saarland. Insured and interested parties can rely on personal support in our 21 customer centers in the region. In addition, IKK Südwest can be contacted around the clock seven days a week via the IKK service hotline 0681/ 3876 1000 or at www.ikk-suedwest.de.

For inquiries

Mathias Gessner

Press spokesman

Phone: 0681/3876-1163

E-mail: presse@ikk-sw.de

About the mhplus health insurance company:

mhplus Krankenkasse is open to those with statutory health insurance. Around 1,000 employees look after more than half a million policyholders throughout Germany. Independent tests confirm high service standards and solid finances. The mhplus supplementary contribution has remained stable at 1.58% since 2023.

For inquiries

Isabell Rabe

Head of Press and Politics

Phone: 07141/9790-9845

E-mail: presse@mhplus.de

About the SBK: 

SBK Siemens-Betriebskrankenkasse is the largest company health insurance fund in Germany and is one of the 20 largest statutory health insurance funds. As an open, nationwide health insurance company, it insures more than one million people and looks after over 100,000 corporate customers in Germany – with around 2000 employees in 86 branches. For more than 100 years, SBK has been personally committed to the interests of its policyholders. It positions itself as a pioneer for genuine quality competition in statutory health insurance. From the SBK’s point of view, the prerequisite for this is more transparency for the insured – about relevant key financial figures, but also about the willingness to perform, advice and service quality of health insurance companies. In the interests of the customer, SBK also combines the best of the personal and digital worlds and is actively driving forward digitalization in the healthcare sector. 

For inquiries 

Julia Mederle

Corporate Communications Department 

Phone: +49 89 62700-363 

E-mail: julia.mederle@sbk.org Internet: www.sbk.org

Other News

contextflow & Neologica partner to bring comprehensive chest CT support to radiologists
2024-06-06

Vienna, Austria (June 5, 2024) – Neologica, the long-running developer of advanced medical imaging software solutions, and contextflow announce a commercial partnership to bring contextflow’s ADVANCE Chest CT solution to Neologica’s radiology base. 

Under the partnership, contextflow’s innovative computer-aided detection support for chest CT will be integrated into Neologica’s LogiPACS. Founded in 2002, Neologica develops a range of products, including a PACS server, DICOM viewer and online patient portal. All of the company’s products are developed in-house for maximum interoperability. By partnering with contextflow, Neologica can offer its users a powerful tool to detect lung cancer, ILD patterns and COPD on chest CT.

contextflow’s core technology is ADVANCE Chest CT, an AI-based medical device software that detects, visualizes and quantifies nodules and lung disease patterns to improve the speed and quality of radiology reporting with consistent, objective information. Its upcoming malignancy scoring feature has been shown to not only detect lung cancer sooner but also to reduce both false positives and false negatives (*Adams, Scott J et al., JACR September 2022). 

As Marco Sambin, CEO at Neologica explains, “It’s undeniable that the PACS market is expressing a strong demand for diagnostic decision support solutions through AI. Neologica’s partnership with contextflow is a response to this request within the realm of chest CT imaging. ADVANCE Chest CT is an extremely advanced (CE MDR certified) product for the detection of lung nodules and other lung pathologies. Users of our LogiPACS and RemotEye Viewer will have access to an AI-enhanced workflow with seamless integration into our software modules.”

In addition to increased access to clinical decision support for chest CT, the partnership aims to reduce false positives and patient stress in relation to lung cancer detection via malignancy scoring. Malignancy scoring is a newly released feature that enables a radiologist to compare suspicious nodules to thousands of others with known outcomes in order to indicate the probability that a given  nodule is malignant or benign. As contextflow Chief Commercial Officer Marcel Wassink puts it, “Malignancy scoring has been validated in a clinical study to reduce false positive nodule detection by 18% while detecting lung cancer up to one year earlier. We hope this level of certainty helps avoid patient anxiety and reduce unnecessary costs and work for radiologists.”

About contextflow 

contextflow is a spin-off of the Medical University of Vienna (MUW) and European research project KHRESMOI, supported by the Technical University of Vienna (TU). Founded by a team of AI and engineering experts in July 2016, the company has a strong interest in bringing state-of-the-art machine learning techniques to the market e.g. improved emphysema detection and lung segmentation. Its computer-aided detection software ADVANCE Chest CT is CE Marked and available for clinical use within Europe under the new MDR.

About Neologica

Neologica is an ISO 9001 and ISO 13485-certified company designing and developing advanced software solutions in the medical imaging field.

With more than 20 years of history and experience, and developing the initial goal of specializing in the DICOM field, today Neologica has a complete range of DICOM-compliant software products in the medical imaging field. This range is composed of software modules that the company has designed and developed in-house from the ground up, covering everything from visualization to archiving, from printing to data exchange. Today, Neologica continues to innovate with original ideas and a strong focus on the quality of its products.

With 5000+ installations across 40+ countries and 5 continents, along with a record of highly satisfied customers, Neologica is now a recognized actor in the medical imaging domain.

The professionalism and skills of its human resources are fundamental values for Neologica; exceeding customers’ expectations with its products is the company’s main objective.

For more information, contact: 

Julie Sufana, Chief Marketing Officer, contextflow, email: julie@contextflow.com 

Phone: +43 6769201032 

Marco Sambin, Chief Executive Officer, Neologica, email: marco.sambin@neologica.it

Phone: +39 019 505314 

Other News

contextflow targets early lung cancer detection by augmenting ADVANCE Chest CT with malignancy scoring from RevealDx
2024-05-02

Vienna, Austria (02.05.2024) – Chest CT experts contextflow GmbH have released a new version of their comprehensive computer-aided detection support tool, ADVANCE Chest CT. In addition to lung nodule detection, quantification, visualization and classification, the updated software now analyzes nodules for malignancy with the aim of detecting cancer early and reducing unnecessary procedures.

It’s widely known that lung cancer constitutes one of the leading causes of premature death, and thus early detection of cancer is crucial. For that very reason, contextflow has implemented a malignancy Similarity Index (mSI) feature into ADVANCE Chest CT, a clinical decision support tool that aids radiologists in the diagnosis of lung cancer, interstitial lung diseases (ILD) and chronic-obstructive pulmonary disease (COPD). 

A malignancy Similarity Index is a value from 0 to 1 that indicates the degree of similarity between a nodule in question and nodules with known outcomes in a reference set. In clinical practice, a high mSI would indicate “upgrading” followup of a nodule as compared to guideline recommendations because there is increased certainty that the nodule in question is malignant. Here, the goal is to detect cancer as early as possible in order to improve patient outcomes.

As contextflow CEO Markus Holzer puts it, “Detecting lung cancer is a challenging and time-consuming task for radiologists. Detection is not straightforward. All too often patients are scheduled for followups months after their initial exam without knowing whether they actually have cancer or not. This is extremely stressful, but thankfully we can start to change that.”

On the flip side, a low mSI score would indicate “downgrading” the nodule with the aim of reducing invasive, unnecessary procedures and patient stress. In a clinical study published in the Journal of the American College of Radiology, use of the RevealDx mSI feature was shown to detect cancer up to one year sooner in approximately 45% of cases while simultaneously reducing false positive detection rates by 18% (Adams, Scott J. et al. JACR September 2022).

As Chris Wood, CEO of RevealDx says, “Our integration with ADVANCE Chest CT simplifies the interpretation of lung nodules. Automatically detected nodules have their mSI scores calculated before the radiologist starts reading the exam, which should save time while providing clinical insight.”

The latest version of contextflow ADVANCE Chest CT also includes a nodule tracking report to visualize and quantify changes in nodules over time. contextflow ADVANCE Chest CT is a CE marked medical device under MDR. For more information, contact sales@contextflow.com or visit contextflow.com.

About contextflow 

contextflow is a spin-off of the Medical University of Vienna (MUW) and European research project KHRESMOI, supported by the Technical University of Vienna (TU). Founded by a team of AI and engineering experts in July 2016, the company has a strong interest in bringing state-of-the-art machine learning techniques to the market e.g. improved emphysema detection and lung segmentation. Its computer-aided detection software ADVANCE Chest CT is CE Marked and available for clinical use within Europe under the new MDR. Visit contextflow.com for more information. 

About RevealDx

RevealDx developed RevealAI-Lung, the world’s first CADx software for the characterization of lung nodules to receive the CE Mark. RevealAI-Lung has been validated in clinical studies that show improvement in diagnostic precision using our patented methods.  Results demonstrate the software can significantly accelerate lung cancer diagnosis and reduce unnecessary procedures. https://reveal-dx.com/

For more information, contact: 

Julie Sufana, Chief Marketing Officer, contextflow

Email: julie@contextflow.com 

Phone: +43 676 920 1032 

Chris Wood, CEO, RevealDx

Email: chris@reveal-dx.com

Phone: +01 425 895 2845

Other News

contextflow gewinnt den Wettbewerb Healthy Hub von vier Krankenkassen: Innovative Lösungen für Frauengesundheit und Früherkennung
2024-03-13

DORTMUND, 13.03.2024. Die Gewinnerinnen und Gewinner des Healthy-Hub-Wettbewerbs 2024 wollen die Gesundheit von Frauen mit innovativer Versorgung verbessern. Die verschiedenen Angebote beziehen sich auf unterschiedliche Lebensphasen und Krankheitsbilder – von hybriden Tests gegen HPV-Viren, über die Versorgung bei frauentypischen Krankheiten wie Endometriose, bis hin zu einer innovativen Therapie bei Beschwerden in der Menopause. Menschen mit Lungenerkrankungen sollen in Sachen Früherkennung besser betreut werden. Diese Themen gehen die Siegerteams jeweils mit einer der vier Krankenkassen – BIG direkt gesund, IKK Südwest, mhplus Krankenkasse und SBK Siemens-Betriebskrankenkasse – an. Die Kassen haben den Wettbewerb bereits zum fünften Mal gemeinsam ausgerichtet.

„Im Fokus standen dieses Mal selektivvertragliche Versorgungslösungen, die insbesondere das Gender Health Gap, also die Ungleichheit der Versorgung von Frauen gegenüber Männern, berücksichtigen sollten“, erläutert Dr. Elmar Waldschmitt, Geschäftsführer des Healthy Hub und Vorstandsbeauftragter bei der BIG.  Die medizinische Forschung und Versorgung sei leider immer noch zu stark auf Männer fokussiert.

Aus gut 40 Bewerbungen wurden die Gewinnerinnen und Gewinner ausgewählt. Diese sind:

Remi Health, Kassenpartnerin BIG direkt gesund

Remi Health hat eine Früherkennung gegen Gebärmutterhalskrebs entwickelt, bei der sich weibliche Versicherte zuhause auf Humane Papillomviren (HPV) testen können. Bei auffälligem Befund sind eine Online-Beratung und die Terminvereinbarung bei einer Gynäkologin oder einem Gynäkologen vorgesehen. Die digitale Plattform von Remi klärt zudem über die Bedeutung der Vorsorge und Früherkennung auf. „Der niedrigschwellige HPV-Test vereint Heimtests, Telemedizin und Prävention in einem nahtlosen Prozess“, erläutert Marvin Abert, Co-CEO von Remi Health. „Damit möchten wir insbesondere junge Frauen erreichen, die bislang die Krebsvorsorgeuntersuchungen nicht in Anspruch nehmen und keine Immunität durch eine HPV-Impfung besitzen. Der HPV-Selbsttest von Remi Health ist unserer Ansicht nach ein innovativer Lösungsansatz, um die Krebsvorsorge sinnvoll zu ergänzen“, sagt Christiane Heidrich, Teamleiterin Managed Care der BIG direkt gesund.

Femna Health, Kassenpartnerin SBK Siemens-Betriebskrankenkasse

Rund ein Drittel der Frauen im fertilen Alter, also in den fruchtbaren Jahren, leidet unter stark einschränkenden physischen, psychischen und sozialen Belastungen aufgrund von Zyklusbeschwerden. Darunter fallen Erkrankungen wie PMS, Endometriose oder auch Dysmenorrhö. „Die aktuelle Versorgung geht unter anderem aufgrund von mangelnden Therapiemöglichkeiten, langen Wartezeiten und fehlender individueller Betreuung diese Probleme nicht adäquat an. FEMNA hat deshalb ein hybrides Versorgungsmodell entwickelt, das Frauen eine verbesserte, vollumfängliche und sofortige Versorgung ermöglicht“, erklärt Maxie Matthiessen, Gründerin von Femna Health. „Femna Care verbessert Verhaltensmuster und hilft, Folgeerkrankungen zu vermeiden sowie die Lebensqualität betroffener Frauen zu steigern“, sagt Christina Bernards, Teamleiterin Versorgungsmanagement, SBK Siemens-Betriebskrankenkasse. „Für uns ein echtes Herzensthema, denn gerade die Frauengesundheit wird in Medizin und Forschung massiv vernachlässigt und unterfinanziert. Es wird Zeit, dass wir das ändern.“

YoniCare, Kassenpartnerin mhplus Krankenkasse

Mit YoniCare (MICADO HEALTH CARE GmbH) hat der Healthy Hub erstmals ein nicht-digitales Versorgungsprodukt im Portfolio. YoniCare ermöglicht eine Lasertherapie zur Behandlung des genitourinären Syndroms. „Der sinkende Östrogenspiegel in der Menopause führt bei Frauen unter anderem zu Scheidentrockenheit, Veränderungen im Vaginalgewebe sowie der Vaginalschleimhaut und in der Folge zu Beschwerden wie Jucken, Inkontinenz, Infekten und anderen Beschwerden“, so Mandy Wilms von der MICADO HEALTH CARE GmbH. Die Therapie kann das vaginale Epithel revitalisieren, das die Vagina und den Scheidenvorhof auskleidet. Die Beschwerden nehmen ab und die gynäkologische Gesundheit wird wiederhergestellt. „Die Therapie kann eine Hormonersatztherapie überflüssig machen und Wechselwirkungen mit Medikamenten reduzieren“, sagt Fabienne Knaub, Referentin Selektivverträge und Versorgungsanalyse der mhplus Krankenkasse. 

.

contextflow, Kassenpartnerin IKK Südwest

Bei Erkrankungen im Thoraxbereich ist eine Früherkennung wesentlich für den Therapieerfolg. „Wir bieten eine KI-Software, die ergänzende Informationen zur Identifizierung und Interpretation von lungenspezifischen Bildmustern in Scans vom Computertomographen bietet“, so Markus Holzer, CEO und Co-Founder von contextflow. Das ultimative Ziel der Software ist es, Lungenkrebs so früh wie möglich zu erkennen, um Ressourcen des Gesundheitssystems zu sparen und Patientinnen und Patienten vor unnötigen Eingriffen zu schützen. „Die Bildanalyse-KI ermöglicht den befundenden Radiologen eine schnellere und bessere Beurteilung relevanter Bildmuster von Lungenkrebs und respiratorischen Erkrankungen“, sagt Dr. Florian Brandt, Health Innovation Manager der IKK Südwest. 

Anwendungsfälle für die Versorgungspraxis entwickeln

Die vier Krankenkassen entwickeln in den nächsten Monaten gemeinsam den Gewinnerteams konkrete Anwendungsfälle, die für den Einsatz in der Gesetzlichen Krankenversicherung (GKV) geeignet sind. „Unser Ziel ist es, dass diese innovativen Versorgungsmethoden in der Versorgungspraxis ankommen“, so Dr. Elmar Waldschmitt. Zudem wird der Kooperationspartner des Healthyhub, die GWQ ServicePlus AG, in die Entwicklung von Anfang an eingebunden. 

Über den Healthy Hub

Seit 2018 engagieren sich die vier Krankenkassen BIG direkt gesund, IKK Südwest, mhplus Krankenkasse sowie SBK Siemens-Betriebskrankenkasse mit dem Healthy Hub für die Digitalisierung des Gesundheitswesens. Ziel ist es, innovative Lösungen für eine bessere, integrierte Versorgung zu ermöglichen. Dazu organisieren die Kassen regelmäßig Wettbewerbe für Start-ups. So haben sie bereits 27 Start-ups in die Versorgung gebracht. 

Über BIG direkt gesund 

Die BundesInnungskrankenkasse Gesundheit – kurz BIG direkt gesund – wurde 1996 in Dortmund gegründet. Die große Idee hinter der BIG: Wir schaffen Raum fürs Menschsein. Gemeint ist damit eine moderne Online-Ausrichtung und empathischer Service, der schnell und lösungsorientiert ist. Die BIG bietet vielseitige Kommunikationswege passend zum jeweiligen Lebensstil ihrer bundesweit rund 510.000 Versicherten. Diese Kundinnen und Kunden erfahren eine wertschätzende und verständliche Beratung per Telefon, Chat, Mail oder Brief. Viele Zusatzleistungen sowie ein attraktives Bonusprogramm sind weitere große Pluspunkte. BIG direkt gesund hat ihren Rechtssitz in Berlin, ihre Hauptverwaltung in Dortmund und einen wichtigen Verwaltungsstandort in Aachen. Die BIG beschäftigt an den operativen Standorten rund 950 Mitarbeiterinnen und Mitarbeiter, in 11 BIGshops wird Beratung vor Ort angeboten.

Für Rückfragen

Bettina Kiwitt

Leiterin Unternehmenskommunikation

Tel.: 0231/5557-1016

E-Mail: bettina.kiwitt@big-direkt.de

Über die IKK Südwest:

Aktuell betreut die IKK Südwest mehr als 635.000 Versicherte und über 90.000 Betriebe in Hessen, Rheinland-Pfalz und im Saarland. Versicherte und Interessenten können auf eine persönliche Betreuung in unseren 21 Kundencentern in der Region vertrauen. Darüber hinaus ist die IKK Südwest an sieben Tagen in der Woche rund um die Uhr über die IKK Service-Hotline 0681/ 3876 1000 oder www.ikk-suedwest.de zu erreichen.

Für Rückfragen

Mathias Gessner

Pressesprecher

Tel.: 0681/3876-1163

E-Mail: presse@ikk-sw.de

Über die mhplus Krankenkasse:

Die mhplus Krankenkasse ist offen für gesetzlich Krankenversicherte. Rund 1.000 Mitarbeitende betreuen deutschlandweit mehr als eine halbe Million Versicherte. Unabhängige Tests belegen hohe Servicestandards und solide Finanzen. Der Zusatzbeitrag der mhplus beträgt seit 2023 stabil 1,58 Prozent.

Für Rückfragen

Isabell Rabe

Leiterin Presse und Politik
Tel.: 07141/9790–9845

E-Mail: presse@mhplus.de

Über die SBK: 

Die SBK Siemens-Betriebskrankenkasse ist die größte Betriebskrankenkasse Deutschlands und gehört zu den 20 größten gesetzlichen Krankenkassen. Als geöffnete, bundesweit tätige Krankenkasse versichert sie mehr als eine Million Menschen und betreut über 100.000 Firmenkunden in Deutschland – mit rund 2000 Mitarbeiterinnen und Mitarbeitern in 86 Geschäftsstellen. Seit über 100 Jahren setzt sich die SBK persönlich und engagiert für die Interessen der Versicherten ein. Sie positioniert sich als Vorreiter für einen echten Qualitätswettbewerb in der gesetzlichen Krankenversicherung. Voraussetzung dafür ist aus Sicht der SBK mehr Transparenz für die Versicherten – über relevante Finanzkennzahlen, aber auch über Leistungsbereitschaft, Beratung und Dienstleistungsqualität von Krankenkassen. Im Sinne des Kunden vereint die SBK darüber hinaus das Beste aus persönlicher und digitaler Welt und treibt die Digitalisierung im Gesundheitswesen aktiv voran. 

Für Rückfragen 

Julia Mederle

Stab Unternehmenskommunikation 

Tel.: +49 89 62700-363 

E-Mail: julia.mederle@sbk.org Internet: www.sbk.org

Other News

contextflow included in Spanish study on rheumatoid arthritis and ILDs
2024-03-13

The Spanish Society of Rheumatology is currently conducting a research study to explore the prevalence and early detection methods of interstitial lung disease (ILD) in individuals diagnosed with rheumatoid arthritis (RA). Fifteen Spanish rheumatology departments will work on the study together with the radiology departments in 2024 and 2025.

This collaboration will address an important healthcare issue: the early detection of ILDs, which tend to go undetected until later stages. This, in turn, negatively impacts patient outcomes, particularly when a patient suffers from cardiovascular diseases. 

It is assumed that approximately 30% of RA patients may develop diffuse ILDs, underscoring the need for effective screening criteria. To achieve this goal, the research team has outlined specific criteria for participant selection, and the study aims to recruit over 450 patients across 15 hospital centers. The study results will hopefully help define strategies for early detection of ILD in patients with RA.

contextflow ADVANCE Chest CT will deliver automatic quantification regarding the extent of ILD in the study population, enabling detailed examination of the lung parenchyma. Furthermore, the study will compare the interstitial involvement of the lung parenchyma in chest CTs assessed by radiologists and compare them to the results from the automatic detection of ILD-associated patterns by contextflow’s AI software. 

While specific lung patterns under assessment remain unclear, the integration of AI-driven analysis promises to enhance diagnostic accuracy and efficiency.

This collaborative effort aims to improve early detection and management of ILDs in RA patients, potentially leading to better outcomes and quality of life for affected individuals.

Other News

Improving IPE diagnosis in the clinical workflow: the role of AI
2023-12-13

In July 2023, Erasmus Medical Center’s radiology department kicked off a four-year project focusing on the use of CT to improve diagnosis and treatment outcomes of incidental pulmonary embolism (IPE). The project was made possible through a grant from the NHI (Netherlands Health Institute) and is a collaboration between contextflow and esteemed partners in the Netherlands:

  • Erasmus Medical Center, Department of Radiology in Rotterdam
  • Erasmus School of Health Policy and Management (ESHPM), Department of Health Technology Assessment in Rotterdam
  • Technical University Delft, Department of Imaging Physics in Delft

The project is evolving under the guidance of the dedicated PhD student Erik Kempner at Erasmus University and will explore ways in which machine learning-based technology can be seamlessly blended into workflows to help radiologists and clinicians catch IPEs earlier and more accurately. 

Besides an obvious benefit to patients and radiologists (and a seeming benefit to hospitals and the healthcare system at large) the use of AI in clinical practice has never really been explored for IPE. Therefore, the project will look into the impact of the technological advancement of IPE detection in various settings with the aim of redefining the landscape of radiology and potentially set new benchmarks in efficiency and patient-centered care as they relate to IPE. 

This collaboration shows the power of interdisciplinary cooperation in medical technology innovation. Over the course of the next four years, the involved parties will work on producing results that could be used for setting new standards for radiology and healthcare.

What is IPE and why use AI to detect it?

Pulmonary embolism is a life-threatening condition that requires prompt diagnosis and treatment. Detecting IPE in computed tomography (CT) scans can be challenging, and the project group believes AI can help in improving the accuracy and consistency of IPE detection by analyzing and identifying subtle patterns that may go unnoticed by human observers and by reducing false negatives and false positives. 

The interpretation of medical imaging can be time-consuming, especially in busy healthcare settings. AI algorithms can rapidly analyze images and assist radiologists in the detection of IPE, potentially reducing the time required for diagnosis. 

By providing consistent and reproducible results, AI algorithms can also help reduce inter-observer variability and ensure that the same criteria are applied to every case. This standardization can lead to more reliable diagnoses, enabling better patient management and facilitating research and quality improvement initiatives.

Other News

Blackford and contextflow Announce Commercial Partnership to Bring Comprehensive Chest CT Detection Software to Healthcare Providers
2023-11-16

Edinburgh, Scotland (November 16th, 2023) – Blackford, the pioneering strategic AI platform and solutions provider, and contextflow today announced a commercial partnership to bring contextflow’s ADVANCE Chest CT solution to healthcare professionals.

Under the partnership, contextflow’s innovative technology will be integrated with Blackford’s advanced enterprise AI platform. Blackford provides healthcare professionals access to an extensive portfolio of medical AI solutions designed to drive clinical efficiency and improve patient outcomes. By integrating contextflow’s advanced detection technology into the Blackford platform, Blackford can offer healthcare providers a powerful tool for detecting ILD, COPD and lung cancer on chest CTs.

« Blackford exists to improve the lives of patients and populations – we can do this by providing tailored AI solutions to healthcare providers around the world to help enhance therapy selection and treatment optimisation », said Ben Panter, CEO of Blackford. « We are delighted to partner with contextflow to add their advanced tools for lung disease detection, quantification and monitoring of disease progression to our AI portfolio.” 

contextflow’s CE and UKCA marked technology, ADVANCE Chest CT, offers radiologists comprehensive computer-aided detection support for lung cancer, ILD, and COPD patients. The software detects, visualizes and quantifies nodules and lung disease patterns to enhance the speed and quality of radiology reports. Its upcoming malignancy scoring feature has been shown to not only detect lung cancer sooner but also to reduce both false positives and false negatives (*Adams, Scott J et al., JACR September 2022). 

As contextflow’s Chief Commercial Officer Marcel Wassink puts it, “Successful implementation of lung cancer screening programs will require the use of assistive AI to help with earlier detection and manage the workloads. We also understand that lung cancer is only one of many findings relevant to the patient’s wellbeing, and thus we are proud to offer comprehensive support for chest CT that goes beyond cancer to include ILD, COPD, and in the near future, incidental pulmonary embolism. Our partnership with Blackford will accelerate the adoption of this much-needed AI, increasing its accessibility to radiologists and patients alike.”

About Blackford 

Blackford are pioneers in the radiology AI space, with over a decade of experience working in partnership with leading hospitals and ground-breaking technology providers. We operate as a strategic AI partner, providing access to a tried-and-tested core platform, tailored services, and a portfolio of 100+ applications to help healthcare providers unlock the value of AI and improve patient outcomes. 

Our collaboration and recent arms-length acquisition by Bayer ensures that our customers and partners have the support and long-term security needed to underpin successful AI strategies. 

To learn more about Blackford’s tailored approach to AI solutions visit www.blackfordanalysis.com.  

About contextflow 

contextflow is a spin-off of the Medical University of Vienna (MUW) and European research project KHRESMOI, supported by the Technical University of Vienna (TU). Founded by a team of AI and engineering experts in July 2016, the company has a strong interest in bringing state-of-the-art machine learning techniques to the market e.g. improved emphysema detection and lung segmentation. Its computer-aided detection software ADVANCE Chest CT is CE Marked and available for clinical use within Europe under the new MDR. Visit contextflow.com for more information.

Other News

Always in the picture thanks to AI
2023-09-27

Evangelisches Klinikum Niederrhein introduces contextflow ADVANCE Chest CT in the Pulmonology Department

Lung diseases are among the most common as well as most diverse health problems worldwide. They require precise diagnoses and effective treatment strategies. In this context, artificial intelligence (AI) opens up a promising avenue for detecting a wide variety of disease conditions in affected patients as early as possible. Fanar Othman, head physician at the Clinic for Pulmonary and Bronchial Medicine at Johanniter Hospital Oberhausen, has also discovered the possibilities of deep learning-based technology for himself. He uses the CE certified software contextflow ADVANCE Chest CT to ensure that even when there is a lot to do, the pulmonologist no longer misses anything.

As part of the Lower Rhine Evangelical Hospital and Bethesda Hospital network, the department not only cares for around 3,000 patients a year in its own hospital, but also provides consultative care for three other sites in the western Ruhr region, including Dinslaken and Duisburg. As a former stronghold of the coal and steel industry, the region is also known as the « coal pot ». Particularly among the older generation, the doctors still see many patients whose health was severely affected by their work in the former mines, blast furnaces and factories. As a result, a not insignificant proportion of the medical care provided locally is for occupational lung diseases such as pneumoconiosis, silicosis, asbestosis and, unfortunately, the resulting late effects such as cancer and pleural mesothelioma. 

So there is a lot to do for the total of five pulmonologists under the direction of Fanar Othman. « We have a large catchment area and, simply because of the size of our association, we get to see a large number of rare pathologies in addition to the usual clinical findings, » says the chief physician. « In these cases, it can already become a challenge to make the correct diagnosis and initiate appropriate therapy. » In this context, a single disease may be associated with multiple radiological patterns. Precise characterization is often laborious and examiner-dependent.

Quick access to relevant knowledge

Since last year, contextflow’s AI solution has been providing a remedy for this problem. It takes over the sifting and provision of information from CT examinations that are relevant for diagnostics. The recognition software detects even small changes in the lung parenchyma and relates them to specific diseases. For nodules, it can even show progression. The resulting findings report is generated automatically and is available directly in the PACS viewer within a few minutes. In this way, the tool saves the diagnostician from having to work through thousands of image slices every day, and at the same time, prevents anything important from being overlooked. 

Using an AI system in his department is new territory for Fanar Othman. He was made aware of ADVANCE Chest CT by his physician colleague, the head of radiology, Prof. Dr. Jörg Michael Neuerburg, who has already been using the software successfully for some time. « From the beginning, I liked how affable and user-friendly the application was, » Othman recalls. « You have to take care of practically nothing. The findings generated by the AI are prepared in a simple and clearly understandable way, so you can adopt the results without time-consuming cross-checking. There is not enough time for anything else in daily practice. Everything has to be done in a jiffy. »

Progress controls at the push of a button

When the opportunity arose to take part in a product training course initiated by contextflow, the pulmonologist jumped at the chance. During the online training, he discovered that the software can do a lot more that is valuable for his work: « For example, the AI is able to compare different series of images taken at different points in time. This makes it possible to assess the size development of nodules, which is very important for determining further therapeutics. »

In addition to calculating the diameter in a plane, the system also applies 3D volumetric analysis to evaluate the total mass of a pulmonary nodule. The volumetric measurement method is becoming increasingly important because it offers a more accurate assessment of malignancy risk, or tumor grade, compared to linear measurement, and also helps to better monitor response to therapy – especially when it comes to determining tumor doubling time. This refers to the fact that in most malignant lesions, volume increases first, followed by size.

From the pattern of findings to differential diagnosis

The software solution is also used for texture analysis, e.g. for characterizing parenchymal changes such as ground-glass opacities, reticular pattern or honeycombing. In this context, the distribution of the changes in the lung allows decisive conclusions to be drawn about the underlying clinical picture. However, differential diagnosis is a difficult and complex task due to the sheer number of existing lung pathologies. In addition, it is often the small but subtle differences that matter. Even experienced experts sometimes reach their limits here. « Sometimes it’s difficult to decide with subtle changes in the lower lobe: is this an emphysema bullae or honeycombing? The AI can differentiate such structures incredibly well, » Fanar Othman is pleased to report.

What the Oberhausen head physician also likes is that the structural parenchymal changes can be displayed in percentage form with the help of ADVANCE Chest CT: « When a check-up is due, you can’t always tell with the naked eye whether it has improved after therapy or not. If the response is not that great, it’s helpful to know by what percentage it ultimately got better. A lot of patients ask us explicitly about that, too. » So such clear feedback can have a positive effect on doctor-patient communication.

Overall, the expert is very pleased with how AI has been able to reduce the workload in his department over the past year while increasing diagnostic accuracy. He says his team is also enthusiastic and has already asked him – or rather the AI – for advice in one or two tricky cases. Othman is not worried that a machine could one day outstrip him: « I see it as an opportunity – especially in view of the fact that there is a shortage of staff anyway. AI is therefore a helpful support in the diagnostic process that makes a lot of things easier. In the end, it is still us who bring it all together with the laboratory values, clinical data and samples and come to a decision. That remains the fine art and continues to be the physician’s task. »

Other News

Improving lung segmentation for higher coverage of clinically-relevant findings: a contextflow whitepaper
2023-09-01

This whitepaper was developed by contextflow’s Scientific and R&D teams to explain our approach behind lung segmentation. The full text is listed below. For a pdf copy, click here.

Abstract

Automatic lung segmentation in computed tomography (CT) is a critical component of computational medical image analysis. While many approaches exist, it remains a challenging problem for patients whose lungs are affected by disease. Here we describe and evaluate a lung segmentation algorithm that yields high accuracy despite disease patterns thanks to a 3D architecture and diverse training data set. We compare our algorithm with the established state-of-the-art algorithm.

Introduction

Automatic lung segmentation in chest CT scans is relevant for several reasons. It serves as a stepping stone for additional lung-specific analysis such as nodule detection or disease pattern segmentation.  Focusing on the lung area helps to improve execution speed of dependent components and to disambiguate any finding in adjacent areas. By itself, lung segmentation yields a measurement of the lung volumetry, which can be meaningful, and is necessary to assess the proportion of disease patterns covering lung tissue.

The existing computer-assisted solutions for lung segmentation make use of a wide range of approaches with different levels of complexity pertaining to various use cases, such as lung cancer screening, COVID-19, or COPD assessment (Hu et al., 2001; Armato et al., 2004; Sluimer et al., 2005; Mansoor et al., 2015; Shamim et al., 2022).

At contextflow, we segment the lungs (chest cavity) by their most inclusive definition: we include pleural cavity patterns such as pneumothorax and effusion in our segmentation, even though they are technically not part of the lungs, and designate them accordingly, since they are relevant for comprehensive lung reporting. Our algorithms segment many pathological patterns if present, including pleural cavity patterns such as pneumothorax and effusion, using this inclusive lung segmentation as a starting point. In practice, lung segmentation needs to be simultaneously fast (because it is only one step in a host of different processes to analyze the lungs) and robust, as our product focuses on the detection and quantification of lung abnormalities, including comparison with former studies, to automatically detect (major) pathological changes.

A 3D approach towards robust lung segmentation in CT

To achieve robust lung segmentation, we first focused on the construction of an adequate database. We selected cases based on their clinical content, trying to cover as many different lung pathologies and anomalies as possible to ensure maximum diversity and extensive pathologic pattern coverage (see annex for details). We also made sure to cover a wide variety of acquisition protocols, since there is a large technical heterogeneity regarding CT vendors and acquisition parameters from different institutions around the world. In these cases, the lungs were manually annotated by expert radiologists. The annotation process consisted of a loop of annotations and quality checks until the annotation passed the quality check.

Additionally we worked on the choice of a relevant model architecture. We opted for a 3D-UNet-based architecture. One of the advantages of a model using 3D operations is that 3D information can disambiguate findings hard to discern in a 2D slice. For example, it can be hard to differentiate dense pathological patterns like pleural effusion from structures with soft tissue density like the liver on one slice only. In contrast to 2D models, the 3D model is expected to perform better in these cases, as it uses 3D context to make a prediction. Another advantage is that the model produces a segmentation that is consistent axially by design, contrary to a 2D model that processes each slice independently. It was also designed to be faster, finding a compromise between input size, number of parameters and performance.

Comparative evaluation of lung segmentation accuracy

In order to assess the performance of the developed model, we compared it with a state-of-the-art, publicly-available* model (lungmask) for lung segmentation as a baseline (Hofmanninger et al., 2020). The public model is ranked amongst the best on the public challenge LOLA** (LObe and Lung Analysis) and is frequently used for research purposes for organ segmentation. The model adopts a 2D approach for model training.  

We compared the performance between contextflow 2.0 and lungmask on 1722 scans that were sampled from clinical routine without restriction on age, sex, indication or pathology, and that cover findings such as cancer, emphysema, effusion, atelectasis, fibrosis and other pulmonary diseases. For 1694 cases, at least one Region-Of-Interest (ROI) containing a pulmonary pathological pattern is available, while 120 cases have a pixel-wise segmentation mask. All annotations were created by expert radiologists.

Results: segmentation accuracy evaluated by Dice coefficient

We use the widely-adopted Dice coefficient to compare how well the two models’ predictions overlap with an annotation done by a radiologist. The Dice score ranges between 0 (if there is no overlap) and 1 (complete overlap). We report the Dice coefficient for the whole lungs, the right lung and the left lung, measured on the test set in Table 1. We can see that both models achieve very high Dice on average. However, our method tends to achieve higher Dice with a lower standard deviation, which hints to a more robust segmentation performance over the diverse test dataset.

Results: focusing on regions containing disease patterns

To better assess the difference in performance between the two models, we introduce a metric called Region-Of-Interest (ROI) coverage. ROIs are labeled areas that contain a finding. Here, we consider rectangular ROIs on axial slices containing pulmonary pathological patterns. We define ROI coverage as the percentage of ROI centroids that the lung segmentation is able to cover, meaning that the center of the ROI is included in the segmentation. This metric assesses how accurate the lung segmentation model is, despite the presence of pulmonary diseases. This is crucial in its assessment as a tool to support diagnosis and assessment of lung imaging data. 

Annotating ROIs instead of a pixel-wise annotation of pathological patterns is beneficial because it is more time-efficient. In addition, some diffuse lung pathologies are difficult to annotate on a pixel-level even for expert radiologists, so coarsely annotating the entire affected region is more feasible. For this analysis we use ROIs that were created by radiologists on data that cover a wide range of pulmonary pathological patterns. 

*https://github.com/JoHof/lungmask **https://lola11.grand-challenge.org/

We report the ROI coverage figures in Table 2. The model developed by contextflow performs better overall with a coverage of 98.5% of ROIs compared to 96.5% for the open-source model. This effect is especially pronounced for patterns like masses (87.9% vs. 58.6%) and effusion (95.3% vs. 85.6%). This demonstrates that our model covers the lung pathologies more consistently than the open-source model.

Evaluating execution time

In terms of execution time, our model runs faster than the open-source one. We report the numbers for CPU execution on 8 threads for different sizes of CT scans in Table 3. By design, the open-source algorithm’s execution time directly depends on the number of slices in the input CT whereas the new model depends on the FOV (Field Of View) of the input scan. The developed model can generate lung segmentation much faster than the open-source model.

Summary

In this article we describe how we developed and evaluated a new lung segmentation algorithm. We compared it to an open-source, state-of-the-art solution over which we showed superiority with a conventional metric (Dice coefficient) and with a new clinical-finding-based metric (ROI coverage), showing a higher robustness to a wide variety of cases. Our developed solution also runs faster, making it scalable in terms of the number of scans we can process. Thus, our solution better meets the requirements for usage in clinical practice.

Annex

List of the patterns/pathologies we aim to cover with lung segmentation:

Airway wall thickening, Atelectasis, Bronchiectasis, Bulla, Consolidation, Cyst, Effusion, Emphysema, Ground glass opacification, Honeycombing, Mass, Mosaic attenuation pattern, Nodular pattern, Nodule, Pneumothorax, Pulmonary cavity, Reticular pattern, Tree-in-bud, Fibrosis, Interlobular septal thickening.

Literature

Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. European Radiology Experimental. 2020 Dec;4(1):1-3.

Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, Udupa JK, Mollura DJ. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics. 2015 Jul;35(4):1056-76.

Shamim S, Awan MJ, Mohd Zain A, Naseem U, Mohammed MA, Garcia-Zapirain B. Automatic COVID-19 lung infection segmentation through modified unet model. Journal of healthcare engineering. 2022 Apr 11;2022.

Armato III SG, Sensakovic WF. Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis1. Academic Radiology. 2004 Sep 1;11(9):1011-21.

Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE transactions on medical imaging. 2001 Jun;20(6):490-8.

Sluimer I, Prokop M, Van Ginneken B. Toward automated segmentation of the pathological lung in CT. IEEE transactions on medical imaging. 2005 Aug 1;24(8):1025-38.

Other News

Plus qu’une simple détection de nodules…
2023-08-31

Les radiologues du groupe Imapôle Lyon-Villeurbanne bénéficient du support de l’IA de contextflow pour détecter les anomalies pulmonaires.

L’Imagerie Médicale, pilier central de la médecine moderne, est devenue incontournable aujourd’hui. Véritable pierre angulaire du diagnostic patient, elle le sera encore plus demain. Tourné vers le futur, Imapôle Lyon–Villeurbanne, le service d’Imagerie Médicale du plus grand établissement de santé privé de la région lyonnaise, le Médipôle Lyon-Villeurbanne, s’inscrit pleinement dans cette démarche et, dans cette optique, a intégré contextflow ADVANCE Chest CT dans sa routine clinique. Pour mieux comprendre les motivations de l’adoption de contextflow, les critères de sélection, l’expérience de déploiement et les bénéfices observés, nous avons rencontré Samir Lounis, CEO & General Manager chez ImaOne. Il dirige et pilote l’activité du groupe Imapôle.

Bonjour. Pourriez- présenter Imapôle Lyon-Villeurbanne ?

Le groupe Imapôle est composé de 10 radiologues. Ils sont chargés d’interpréter la production d’images médicales de deux sites : Le Médipôle Lyon Villeurbanne, le plus grand hôpital privé d’Europe avec plus de 850 lits, et le Pôle Médical d’OL Vallée à Décines. 

Ces deux sites réalisent plus de 800 examens par jour et environ 170 000 examens par an.

Notre équipe gère cette charge de travail, et nous sommes fortement engagés dans l’utilisation de solutions d’intelligence artificielle.

Nous croyons fermement en leur potentiel pour soutenir nos radiologues et les transformer en « radiologues augmentés » grâce à l’IA, afin d’une part, pouvoir fournir des diagnostics plus précis et d’autre part, pouvoir gérer un volume d’examens beaucoup plus important.

Quelles ont été les motivations et les facteurs déterminants qui ont conduit votre département de radiologie à envisager l’adoption de l’application contextflow dans votre pratique clinique à Imapôle Lyon-Villeurbanne ?

Au sein d’Imapôle, une part importante de notre activité concerne la cancérologie, environ un tiers. Cela implique que nous devons interpréter un grand nombre d’images, en particulier des scanners, pour le suivi ou la détection de pathologies chez nos patients.

Dans ce contexte, nous avons cherché une solution qui puisse nous aider à dépister les lésions et à suivre leur évolution en termes de taille, notamment en ce qui concerne la croissance ou la diminution des lésions. 

Mesurer une lésion est une tâche complexe et sujette à de nombreuses variations. Cela dépend du plan de coupe utilisé pour la mesure et de l’inclinaison de la lésion elle-même, par exemple dans le cas d’une lésion pulmonaire.

De nombreux facteurs entrent en jeu. Nous souhaitions donc que cette mesure puisse  être volumétrique et reproductible.

Partant de tous ces éléments, nous avons décidé d’utiliser un logiciel. Nous sommes également impliqués dans un programme de dépistage du cancer du poumon au sein du Médipôle.

En France, des études sont actuellement menées dans ce domaine. Au sein d’Imapôle Lyon Villeurbanne, nous disposons d’un département de pneumologie important et nous avons voulu proposer une solution reproductible, efficace et indépendante de l’opérateur qui se trouve derrière l’écran.

Parmi les différentes solutions que nous avions identifiées, le logiciel de contextflow, qui figurait parmi les trois finalistes, nous a paru être le plus performant et le plus complet, répondant ainsi à nos besoins.

Quels ont été les critères de sélection et les évaluations préliminaires effectués avant de choisir l’application contextflow pour votre département de radiologie ?

Nous avons exploré le marché pour rechercher des solutions adaptées à notre mission, qui consiste à détecter et suivre les lésions pulmonaires dans le temps, tout en tenant compte d’autres critères tels que le délai de retour des résultats. Il était essentiel que l’analyse puisse être réalisée rapidement, avec un retour dans le PACS et vers le médecin dans un délai de l’ordre d’environ cinq minutes, afin de maintenir notre flux de prise en charge des patients. Après avoir comparé contextflow à d’autres fournisseurs, nous avons choisi contextflow parce qu’il offre plus que la simple détection de nodules et qu’il s’intègre très bien dans notre PACS. 

L’autre point qui a été un « game changer » dans notre choix, c’est la capacité de contextflow à pouvoir se projeter et proposer, dans un avenir proche, la détection des embolies pulmonaires fortuites.

Nous disposons ainsi d’un outil capable de répondre à plusieurs de nos problématiques, notamment en cancérologie, pour le suivi à long terme, l’analyse et la reproductibilité des mesures, ainsi que l’analyse et la quantification d’autres pathologies pulmonaires comme l’emphysème.

Pouvez-vous retracer l’historique de l’intégration de l’application logicielle contextflow dans votre département de radiologie, depuis sa mise en place jusqu’à aujourd’hui ?

Les équipes techniques de contextflow ont été extrêmement réactives. Nous avons pu les mettre en relation avec nos équipes IT et PACS, et les trois équipes ont rapidement réussi à installer la machine virtuelle pour effectuer tous les tests. Nous avions un délai assez court pour atteindre un niveau d’intégration qui nous permettrait une utilisation transparente, sans que le médecin ne quitte son environnement. C’était un élément clé. 

La solution contextflow est entièrement intégrée dans notre flux de travail. Les envois se font automatiquement de la modalité vers la solution d’IA, et les résultats sont renvoyés dans le PACS. Ainsi, lorsque le médecin prend connaissance de l’examen, il dispose des résultats de contextflow. 

L’accompagnement technique et le support des équipes lors du démarrage ont été extrêmement réactifs, ce qui est très positif pour contextflow. Le niveau d’intégration avec notre PACS est très élevé.

Quelles ont été les étapes clés du processus de mise en œuvre de l’application contextflow dans votre département de radiologie en termes de formation, de personnalisation et de gestion du changement ?

En ce qui concerne contextflow, la formation s’est déroulée en deux étapes. Tout d’abord, il y a eu une formation préliminaire qui consistait essentiellement en une présentation du produit, puis une deuxième partie où l’application du produit a été présentée. Nous avons examiné un cas concret et analysé les résultats obtenus. Cette formation a été dispensée en visioconférence à différentes dates, afin de convenir aux disponibilités des différents médecins impliqués dans le projet, ce qui a été très apprécié. 

Nous avons pu démarrer l’utilisation de la solution avec un accompagnement à distance, si nécessaire, tant de la part de l’équipe de contextflow que de notre équipe IT et PACS. Tout s’est très bien passé.

Après environ un mois d’utilisation, contextflow nous a proposé d’accompagner nos équipes médicales sur site, afin de bénéficier de leur expérience. Cela permettrait également d’apporter des ajustements personnalisés à l’utilisation du produit et de leur faire découvrir des fonctionnalités qu’ils n’auraient peut-être pas saisies lors des premières formations.

Cet accompagnement est toujours en cours. Nous aurons un technicien de l’application qui viendra la semaine prochaine pour rencontrer nos équipes. Il pourra également revenir si les médecins en ressentent le besoin. Maintenant, en ce qui concerne contextflow, le gros avantage est qu’ils ne se limitent pas à la détection et au suivi des nodules dans le temps, ce qui est essentiel et très important pour le dépistage du cancer du poumon, par exemple, et le suivi des fumeurs. Mais, au contraire, il permet aussi d’analyser d’autres pathologies, notamment l’emphysème, ce qui est une quantification primordiale, surtout dans une perspective d’avenir.

À l’avenir, il permettra également de détecter les embolies pulmonaires fortuites, un diagnostic crucial en radiologie. Au Medipôle Lyon Villeurbanne, le plus grand service d’urgence privé de France, nous recevons environ 250 patients par jour, dont la moitié environ passe par le service d’imagerie, et beaucoup d’entre eux bénéficient d’un scanner. 

Nous sommes très heureux d’être soutenus par un logiciel de détection basé sur l’IA pour ces 250 patients, car la charge de travail des radiologues ne cesse d’augmenter. On se retrouve avec 400 à 500 images à analyser par patient. C’est donc une bonne chose d’avoir une intelligence artificielle qui peut vous accompagner dans cette phase de détection et mettre en évidence les zones à risque.

C’est pourquoi la capacité de contextflow à prendre en charge de nouvelles pathologies à analyser a également été un facteur déterminant dans le choix de la solution.

Comment l’application contextflow a-t-elle été intégrée dans le système d’information radiologique existant à l’Imapôle, pour assurer la compatibilité, l’interopérabilité et la synchronisation des données cliniques ?

Ce qui est le plus important, c’est toute la phase préparatoire d’intégration. Cela nécessite un travail considérable qui s’étend sur quelques semaines, pendant lesquelles tous les acteurs impliqués peuvent échanger sur les contraintes techniques. L’utilisateur final, notamment le médecin, peut exprimer ses attentes et objectifs, en particulier sur la manière dont il souhaite retrouver les résultats dans son flux de travail.

La réussite de cette étape se traduit par le fait que, finalement, le médecin n’a pas besoin de quitter son environnement de travail habituel. Il ouvre son PACS et y travaille – les résultats contextuels sont là sans avoir à ouvrir un nouveau programme ou à changer de fenêtre. L’utilisateur n’est pas confronté à une interface totalement différente. En outre, les résultats de contextflow peuvent être adaptés par le radiologue en cas de désaccord, par exemple dans le cas d’un nodule faussement positif.

Plus on parvient à apporter de transparence dans l’utilisation de contextflow au sein du PACS, plus l’intégration est réussie et plus le médecin l’utilisera régulièrement.

Comment mesurez-vous la satisfaction globale des utilisateurs de l’application contextflow au sein de votre département de radiologie en termes de convivialité, de performance et de contribution à la prise de décision clinique ?

Chaque clic coûte du temps et de l’argent aux radiologues, c’est pourquoi il était prioritaire pour nous d’avoir une solution d’IA bien intégrée avec le moins de clics possible.

C’est un élément clé dans l’utilisation de la solution.

Si l’on propose à un médecin, qui est déjà très occupé et soumis à une charge mentale importante liée à l’analyse médicale, des contraintes supplémentaires telles que de devoir naviguer entre différentes fenêtres ou dossiers, il est certain que la solution ne sera pas utilisée. Il peut l’essayer une ou deux fois, mais rapidement, il se rendra compte que cela lui prendra du temps et il finira par se dire : « Je vais m’en passer » et il n’y reviendra plus.

En revanche, si l’on automatise l’ensemble du processus, c’est-à-dire que les images sont acquises par le scanner, envoyées automatiquement à l’IA de contextflow pour analyse, que les résultats sont renvoyés au médecin dans son environnement de travail et qu’il n’a plus qu’à valider ou invalider les résultats de l’IA pour les intégrer dans son compte rendu, alors le nombre de clics est réduit au minimum.

Cela permet une convivialité très appréciable. De plus, le degré d’intégration de la solution dans notre PACS est extrêmement poussé, ce qui rend notre dépendance à la solution encore plus bénéfique.

Quels sont les indicateurs de performance et les critères d’évaluation utilisés pour mesurer l’efficacité et l’impact clinique de l’application contextflow dans votre département de radiologie ?

Au niveau de nos prescripteurs, nous avons une grande quantité de pneumologues et de pneumologues-oncologues au sein de notre pôle. Nous avons donc une équipe de médecins spécialisés dans les affections pulmonaires. Ils ont été très satisfaits de l’application contextflow à un niveau avancé de l’analyse pulmonaire, notamment ici à Lyon. Ils ont particulièrement apprécié la capacité de détecter et de suivre les pathologies pulmonaires dans le temps, ainsi que la possibilité de comparer les résultats.

Lorsqu’un patient est envoyé pour une évaluation après trois ou six mois de chimiothérapie, il est extrêmement précieux de disposer d’un outil tel que contextflow pour assurer la reproductibilité de l’analyse et des mesures. Cela a réellement été un atout majeur pour nos médecins prescripteurs.

Aujourd’hui, l’utilisation de l’outil est demandée presque systématiquement par les médecins prescripteurs, car ils se sont habitués à son utilisation. Ils orientent donc leurs patients vers notre centre afin que leurs examens puissent bénéficier de cette analyse complémentaire en interne. En ce qui concerne nos propres médecins, comme je l’ai mentionné précédemment, plus l’interface dans le flux de travail est transparente, plus elle est utilisée.

Ainsi, à l’heure actuelle, 100 % des scanners pulmonaires passent par contextflow, bénéficiant ainsi d’une double analyse à la fois médicale et assistée par IA. 

Les retours que nous avons obtenus en discutant avec les médecins montrent clairement que l’outil a été adopté et utilisé de la même manière que d’autres outils d’IA que nous avons dans notre parc. Nous avons une équipe de médecins précurseurs dans l’adoption de l’IA, et ils sont conscients des avantages que peut leur apporter l’intelligence artificielle.


Comment aimeriez-vous que la solution contextflow évolue à l’avenir ?

J’aimerais beaucoup que contextflow apporte une solution pour la détection d’embolie pulmonaire, car c’est un besoin réel pour tous les services d’imagerie médicale d’urgence. Cela aidera considérablement les urgentistes et les médecins, accélérant ainsi la prise en charge des patients et réduisant le temps perdu lors de l’analyse. L’équipe de contextflow a pris nos remarques au sérieux et travaille dans ce sens.

Nous sommes très satisfaits de la solution actuelle. contextflow améliore continuellement la spécificité et la sensibilité de l’algorithme de détection des nodules. Ensuite, nous envisageons d’étendre les possibilités d’analyse des pathologies thoraciques, pas seulement pour les poumons, mais également pour les vaisseaux et le cœur, ainsi que pour tous les organes situés dans la région thoracique. 

Si à l’avenir, contextflow pouvait également fournir une analyse pour ces éléments, ce serait un véritable atout.

L’IA est considérée comme l’avenir, mais elle suscite également des craintes. En tant qu’utilisateur, vous pouvez être à la fois enthousiaste et réticent vis-à-vis de certaines applications. Cependant, en tant qu’être humain, vous êtes conscient des implications et des limites de l’IA. Cela peut ouvrir la porte à diverses possibilités. Quelle est votre opinion sur ce sujet ?

Dans notre monde où tout évolue rapidement, bien plus rapidement que la capacité d’adaptation d’un être humain, les données, qu’elles soient médicales ou non médicales, sont multipliées de façon exponentielle. L’analyse de ces données doit donc également être multipliée.

Cependant, les êtres humains n’ont pas la capacité d’adaptation instantanée à un tel flux de données. Peut-être serons-nous capables de le faire dans X années, mais aujourd’hui, nous avons besoin de solutions qui nous accompagnent dans la gestion de ce flux de données. Il est crucial de trier et d’analyser ces données et informations.

En ce qui me concerne, je peux dire que l’IA peut susciter des inquiétudes sur certains aspects. Cependant, je pense que l’IA ne remplacera pas les médecins. C’est un fait que j’ai expérimenté en utilisant ces solutions depuis plusieurs années et en les observant dans notre pratique.

En revanche, ce qui est certain, c’est que le médecin qui utilise l’IA remplacera le médecin qui n’utilise pas cette technologie. C’est là que réside le véritable enjeu. Le monde a évolué plus rapidement que la capacité d’adaptation de l’être humain. Il a donc besoin d’outils technologiques. Ainsi, le médecin qui intègre l’IA dans sa pratique surpassera le médecin « tout court ».

Other News