Evangelisches Klinikum Niederrhein führt contextflow ADVANCE Chest CT in der Pneumologie ein
Lungenerkrankungen gehören weltweit zu den am häufigsten auftretenden sowie vielfältigsten Gesundheitsproblemen. Sie erfordern präzise Diagnosen und effektive Behandlungsstrategien. In diesem Zusammenhang eröffnet Künstliche Intelligenz (KI) einen vielversprechenden Weg, um verschiedenste Krankheitsbilder bei betroffenen Patienten so früh wie möglich zu erkennen. Auch Fanar Othman, Chefarzt der Klinik für Lungen- und Bronchialheilkunde am Johanniter Krankenhaus Oberhausen, hat die Möglichkeiten von Deep-Learning-basierter Technologie für sich entdeckt. Im Bereich der computertomographischen Bildgebung nutzt er das CE-zertifizierte KI-Programm contextflow ADVANCE Chest CT. Selbst wenn viel zu tun ist, entgeht dem Pneumologen so nichts mehr.
Als Teil des Verbunds Evangelisches Klinikum Niederrhein und BETHESDA Krankenhaus Duisburg betreut die Abteilung nicht nur jährlich um die 3.000 Patienten im eigenen Haus, sondern übernimmt darüber hinaus noch die konsiliarische Mitbetreuung von drei weiteren Standorten im westlichen Ruhrgebiet, darunter Dinslaken und Duisburg. Als ehemalige Hochburg der Kohle- und Stahlindustrie ist die Region auch als „Kohlenpott“ bekannt. Besonders in der älteren Generation sehen die Ärzte bis heute viele Patienten, denen ihre Arbeit in den früheren Bergwerken, Hochöfen und Fabriken massiv auf die Gesundheit geschlagen ist. Daher entfällt ein nicht unwesentlicher Teil der medizinischen Versorgung vor Ort auf berufsbedingte Lungenerkrankungen wie Staublunge (Pneumokoniose), Silikosen, Asbestosen und leider auch die daraus resultierenden Spätfolgen wie Krebs und Pleuramesotheliome.
Viel zu tun also für die insgesamt neun Ärzte unter der Leitung von Fanar Othman. „Wir haben ein großes Einzugsgebiet und bekommen allein aufgrund der Größe unseres Verbundes neben den gängigen Krankheitsbildern auch eine Vielzahl seltener Pathologien zu Gesicht, die nicht so alltäglich sind“, so der Chefarzt. „In diesen Fällen kann es schon zur Herausforderung werden, die richtige Diagnose zu stellen und eine entsprechende Therapie einzuleiten.“ Dabei kann eine einzelne Erkrankung mit mehreren radiologischen Mustern verbunden sein. Eine genaue Charakterisierung ist oft mühsam und untersucherabhängig.
Schneller Zugriff auf relevantes Wissen
Seit letztem Jahr schafft die KI-Lösung von contextflow Abhilfe bei diesem Problem. Sie übernimmt das Sichten und Bereitstellen von für die Diagnostik relevanten Informationen aus CT-Untersuchungen. Dabei spürt die Erkennungssoftware selbst kleine Veränderungen im Lungenparenchym auf und stellt sie in Zusammenhang mit bestimmten Erkrankungen und deren Verlauf. Der daraus resultierende Befundbericht wird automatisch generiert und steht innerhalb weniger Minuten direkt im PACS-Viewer zur Verfügung. Auf diese Weise erspart das Tool dem Befunder, sich täglich durch Tausende von Schichtbildaufnahmen zu arbeiten und verhindert gleichzeitig, dass wichtige Erkenntnisse übersehen werden.
Der Einsatz eines KI-Systems in seiner Abteilung ist Neuland für Fanar Othman. Aufmerksam gemacht wurde er auf ADVANCE Chest CT von seinem Arztkollegen, dem Chefarzt der Radiologie, Prof. Dr. Jörg Michael Neuerburg, der die Software bereits seit längerer Zeit erfolgreich nutzt. „Mir gefiel von Anfang an, wie umgänglich und benutzerfreundlich die Anwendung ist“, erinnert sich Othman. „Man muss sich praktisch um nichts kümmern. Die von der KI erstellten Befunde sind einfach und klar verständlich aufbereitet, sodass man die Ergebnisse ohne aufwendige Gegenprüfung übernehmen kann. Für alles andere bleibt in der täglichen Praxis auch gar nicht die Zeit. Da muss alles zack, zack gehen.“
Verlaufskontrollen auf Knopfdruck
Als sich die Gelegenheit bot, an einer von contextflow initiierten Produktschulung teilzunehmen, zögerte der Pneumologe nicht lang und ergriff die Chance. Während des Onlinetrainings stellte er fest, dass die Software noch einiges mehr kann, was für seine Arbeit von Wert ist: „Zum Beispiel ist die KI in der Lage, unterschiedliche Serien von Aufnahmen, die zu verschiedenen Zeitpunkten gemacht wurden, miteinander zu vergleichen. Dies ermöglicht es, die Größenentwicklung von Rundherden zu beurteilen, was sehr wichtig für das weitere therapeutische Vorgehen ist.“
Neben der Berechnung des Durchmessers in einer Ebene wendet das System auch die 3D-Volumenanalyse an, um die Gesamtmasse einer Lungenläsion zu bewerten. Die volumetrische Messmethode gewinnt zunehmend an Bedeutung, da sie im Vergleich zur linearen Messung eine genauere Einschätzung des Malignitätsrisikos bzw. des Tumorgrads bietet und außerdem dabei hilft, die Reaktion auf eine Therapie besser zu überwachen – insbesondere, wenn es darum geht, die Tumorverdopplungszeit festzustellen. Damit ist gemeint, dass bei den meisten bösartigen Läsionen zuerst das Volumen zunimmt, dann die Größe.
Vom Befundmuster zur Differentialdiagnose
Des Weiteren kommt die Softwarelösung auch bei der Texturanalyse zum Einsatz, z. B. bei der Charakterisierung von Parenchymveränderungen wie Milchglastrübungen, netzartigen retikulären Mustern oder Honigwabenbildung. Dabei lässt die Verteilung der Veränderungen in der Lunge entscheidende Rückschlüsse auf das zugrunde liegende Krankheitsbild zu. Dennoch gestaltet sich die Differentialdiagnose allein aufgrund der schieren Masse an existierenden Lungenpathologien als schwierige und komplexe Aufgabe. Hinzukommt, dass es häufig die kleinen, aber feinen Unterschiede sind, auf die es ankommt. Selbst erfahrene Experten stoßen hier teilweise an ihre Grenzen. „Manchmal ist es schwierig, bei subtilen Veränderungen im Unterlappen zu entscheiden: Ist das ein Emphysembullae oder Honigwabenmuster? Solche Strukturen kann die KI unglaublich gut differenzieren“, freut sich Fanar Othman.
Was dem Oberhausener Chefarzt außerdem gefällt, ist, dass sich die strukturellen Parenchymveränderungen mithilfe von ADVANCE Chest CT in prozentualer Form darstellen lassen: „Wenn eine Kontrolluntersuchung ansteht, kann man nicht immer mit bloßem Auge erkennen, ob es nach der Therapie besser geworden ist oder nicht. Wenn das Ansprechen nicht so großartig ausfällt, ist es hilfreich zu wissen, um wie viel Prozent es letztendlich besser geworden ist. Viele Patienten fragen uns auch explizit danach.“ So ein eindeutiges Feedback kann sich also positiv auf die Arzt-Patienten-Kommunikation auswirken.
Insgesamt zeigt sich der Experte sehr zufrieden damit, wie die KI die Arbeitslast in seiner Abteilung im letzten Jahr reduzieren konnte und gleichzeitig die diagnostische Genauigkeit erhöht hat. Auch sein Team sei begeistert und habe ihn – oder besser gesagt die KI – in dem ein oder anderen kniffeligen Fall schon um Rat gefragt. Dass eine Maschine ihm eines Tages den Rang ablaufen könnte, darüber macht sich Othman keine Sorgen: „Ich empfinde es als Chance – gerade auch vor dem Hintergrund, dass ohnehin Personalmangel herrscht. Die KI stellt daher eine hilfreiche Unterstützung bei der Befundung dar, die vieles erleichtert. Am Ende sind es immer noch wir, die das Ganze mit den Laborwerten, klinischen Daten und Proben zusammenführen und zu einer Entscheidung kommen. Das bleibt die hohe Kunst und weiterhin Aufgabe des Arztes.“